Microstructure Analysis of High-Density 316L Stainless Steel Manufactured by Selective Laser Melting Process

被引:0
|
作者
Ismat Ara
Fardad Azarmi
X. W. Tangpong
机构
[1] North Dakota State University,Mechanical Engineering
来源
Metallography, Microstructure, and Analysis | 2021年 / 10卷
关键词
Metal additive manufacturing; Selective laser melting; 316L stainless steel; Microstructural characterization; Crystallographic structure; Porosity;
D O I
暂无
中图分类号
学科分类号
摘要
Selective laser melting (SLM) is used to fabricate nearly fully dense 316L stainless steel (SS) samples in this study. A variety of advanced characterization techniques were conducted to identify dominant phases, important crystallographic features, microstructural features, and elemental composition. Porosity of the sample was found to be 0.02% which is the lowest porosity content reported for SLM-processed 316L SS. Microstructural analysis exhibits some columnar grains with epitaxial growth representing complete adhesion between the layers. Existence of some fine cellular grains inside the melt pools is an indication of rapid solidification during the printing process. The strength of this study lies in the addition of new crystallographic information such as lattice parameters of SLM-processed 316L. Finally, using information obtained from the literature, it was possible to better understand the effect of chosen process parameters to achieve nearly fully dense material in the present study.
引用
收藏
页码:754 / 767
页数:13
相关论文
共 50 条
  • [21] Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting
    R.Casati
    J.Lemke
    M.Vedani
    Journal of Materials Science & Technology, 2016, 32 (08) : 738 - 744
  • [22] Microstructure and Mechanical Properties of 316L Stainless Steel Fabricated Using Selective Laser Melting
    Iqbal, N.
    Jimenez-Melero, E.
    Ankalkhope, U.
    Lawrence, J.
    MRS ADVANCES, 2019, 4 (44-45) : 2431 - 2439
  • [23] Microstructure and Anisotropy of the Mechanical Properties of 316L Stainless Steel Fabricated by Selective Laser Melting
    Zhou, Baogang
    Xu, Pingwei
    Li, Wei
    Liang, Yilong
    Liang, Yu
    METALS, 2021, 11 (05)
  • [24] Effect of TaC on microstructure and mechanical properties of 316L stainless steel by selective laser melting
    Meng, Xiangwei
    Yan, Junxia
    Ou, Bingxian
    He, Qing
    Zhang, Yuwei
    Fang, Shupeng
    MATERIALS CHARACTERIZATION, 2023, 202
  • [25] Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting
    Casati, R.
    Lemke, J.
    Vedani, M.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2016, 32 (08) : 738 - 744
  • [26] Fiber laser selective melting of 316L stainless steel powder
    Wang D.
    Yang Y.
    He X.
    Wu W.
    Su X.
    Wang H.
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2010, 22 (08): : 1881 - 1886
  • [27] 316L Stainless Steel Manufactured by Selective Laser Melting and Its Biocompatibility with or without Hydroxyapatite Coating
    Luo, Jiapeng
    Jia, Xiao
    Gu, Ruinan
    Zhou, Peng
    Huang, Yongjiang
    Sun, Jianfei
    Yan, Ming
    METALS, 2018, 8 (07):
  • [28] Additive Manufacturing of 316L stainless steel by Selective Laser Melting
    Moreira Montuori, Riccardo Augusto
    Figueira, Gustavo
    Cataldi, Thiago Pacagnan
    de Alcantara, Nelson Guedes
    Bolfarini, Claudemiro
    Coelho, Reginaldo Teixeira
    Gargarella, Piter
    SOLDAGEM & INSPECAO, 2020, 25 (25): : 1 - 15
  • [29] Effect of post-heat treatment cooling on microstructure and mechanical properties of selective laser melting manufactured austenitic 316L stainless steel
    Waqar, Saad
    Liu, Jiangwei
    Sun, Qidong
    Guo, Kai
    Sun, Jie
    RAPID PROTOTYPING JOURNAL, 2020, 26 (10) : 1739 - 1749
  • [30] Effect of layer-by-layer laser remelting process on the microstructure and performance of selective laser melting 316L stainless steel
    Xuehui Chen
    Kai Wen
    Weihao Mu
    Yuxi Zhang
    Shan Huang
    Wei Liu
    The International Journal of Advanced Manufacturing Technology, 2023, 128 : 2221 - 2236