Optimal Time-decay Estimates for the Compressible Navier–Stokes Equations in the Critical Lp Framework

被引:0
作者
Raphaël Danchin
Jiang Xu
机构
[1] UPEMLV,Université Paris
[2] UPEC,Est, LAMA (UMR 8050)
[3] CNRS,Department of Mathematics
[4] Nanjing University of Aeronautics and Astronautics,undefined
来源
Archive for Rational Mechanics and Analysis | 2017年 / 224卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The global existence issue for the isentropic compressible Navier–Stokes equations in the critical regularity framework was addressed in Danchin (Invent Math 141(3):579–614, 2000) more than 15 years ago. However, whether (optimal) time-decay rates could be shown in critical spaces has remained an open question. Here we give a positive answer to that issue not only in the L2 critical framework of Danchin (Invent Math 141(3):579–614, 2000) but also in the general Lp critical framework of Charve and Danchin (Arch Ration Mech Anal 198(1):233–271, 2010), Chen et al. (Commun Pure Appl Math 63(9):1173–1224, 2010), Haspot (Arch Ration Mech Anal 202(2):427–460, 2011): we show that under a mild additional decay assumption that is satisfied if, for example, the low frequencies of the initial data are in Lp/2(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{p/2}(\mathbb{R}^{d})}$$\end{document}, the Lp norm (the slightly stronger B˙p,10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot B^0_{p,1}}$$\end{document} norm in fact) of the critical global solutions decays like t-d(1p-14)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t^{-d(\frac 1p-\frac14)}}$$\end{document} for t→+∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t\to+\infty,}$$\end{document} exactly as firstly observed by Matsumura and Nishida in (Proc Jpn Acad Ser A 55:337–342, 1979) in the case p = 2 and d = 3, for solutions with high Sobolev regularity.
引用
收藏
页码:53 / 90
页数:37
相关论文
共 40 条
[1]  
Charve F.(2010)A global existence result for the compressible Navier–Stokes equations in the critical Arch. Ration. Mech. Anal. 198 233-271
[2]  
Danchin R.(1999) framework Journal d’Analyse Mathématique 77 27-50
[3]  
Chemin J.-Y.(1995)Théorèmes d’unicité pour le système de Navier–Stokes tridimensionnel J. Differ. Equ. 121 314-328
[4]  
Chemin J.-Y.(2010)Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes Commun. Pure App. Math. 63 1173-1224
[5]  
Lerner N.(2000)Global well-posedness for the compressible Navier–Stokes equations with the highly oscillating initial velocity Invent. Math. 141 579-614
[6]  
Chen Q.(2010)Global existence in critical spaces for compressible Navier–Stokes equations J. Differ. Equ. 248 2130-2170
[7]  
Miao C.(2014)On the well-posedness of the incompressible density-dependent Euler equations in the Annales de l’Institut Fourier 64 753-791
[8]  
Zhang Z.(2016) framework Math. Ann., 366 1365-1402
[9]  
Danchin R.(2012)A Lagrangian approach for the compressible Navier–Stokes equations Commun. Part. Differ. Equ. 37 2165-2208
[10]  
Danchin R.(2011)The incompressible limit in J. Differ. Equ. 251 2262-2295