Stability Results for Second-Order Evolution Equations with Switching Time-Delay

被引:0
作者
Serge Nicaise
Cristina Pignotti
机构
[1] Université de Valenciennes et du Hainaut Cambrésis,Laboratoire de Mathématiques et leurs Applications, Institut des Sciences et Techniques de Valenciennes
[2] Università di L’Aquila,Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
来源
Journal of Dynamics and Differential Equations | 2014年 / 26卷
关键词
Wave equation; Delay feedbacks; Stabilization; 35L05; 93D15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider second-order evolution equations in an abstract setting with intermittently delayed/not-delayed damping. We give sufficient conditions for asymptotic and exponential stability, improving and generalizing our previous results from Nicaise and Pignotti (Adv Differ Equ 17:879–902, 2012). In particular, under suitable conditions, we can consider unbounded damping operators. Some concrete examples are finally presented.
引用
收藏
页码:781 / 803
页数:22
相关论文
共 34 条
[1]  
Ammari K(2010)Feedback boundary stabilization of wave equations with interior delay Syst. Control Lett. 59 623-628
[2]  
Nicaise S(2013)Stabilization by switching time-delay Asymptot. Anal. 83 263-283
[3]  
Pignotti C(1992)Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary SIAM J. Control Optim. 30 1024-1065
[4]  
Ammari K(1988)Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks SIAM J. Control Optim. 26 697-713
[5]  
Nicaise S(1986)An example on the effect of time delays in boundary feedback stabilization of wave equations SIAM J. Control Optim. 24 152-156
[6]  
Pignotti C(2010)Boundary feedback stabilization by time delay for one-dimensional wave equations IMA J. Math. Control Inf. 27 189-203
[7]  
Bardos C(2005)Asymptotic stability for intermittently controlled second-order evolution equations SIAM J. Control Optim. 43 2089-2108
[8]  
Lebeau G(1990)A direct method for the boundary stabilization of the wave equation J. Math. Pures Appl. 69 33-54
[9]  
Rauch J(1983)Control of wave processes with distributed control supported on a subregion SIAM J. Control Optim. 21 68-85
[10]  
Datko R(1987)Uniform exponential decay in a bounded region with J. Differ. Equ. 66 340-390