On the category of rough sets

被引:0
|
作者
R. A. Borzooei
A. A. Estaji
M. Mobini
机构
[1] Shahid Beheshti University,Department of Mathematics
[2] G.C.,Department of Mathematics
[3] Hakim Sabzevari University,undefined
来源
Soft Computing | 2017年 / 21卷
关键词
Approximation space; Product; Coproduct; Lower (Upper) natural transformation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the class of approximation spaces in the present paper. In this class we define the concept of lower natural transformations, upper natural transformations and natural transformations. We prove that the class of approximation spaces with the lower natural transformations, upper natural transformations and natural transformations form categories which are denoted by Apr̲S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{\mathbf{Apr }}{} \mathbf S $$\end{document}, Apr¯S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathbf{Apr }}{} \mathbf S $$\end{document} and AprS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf Apr {} \mathbf S $$\end{document}, respectively. We characterize a lower (upper) natural transformation through equivalence classes in an approximation space. We prove that two categories AprS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf Apr {} \mathbf S $$\end{document} and Apr̲S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{\mathbf{Apr }}{} \mathbf S $$\end{document} are the same. We characterize several kinds of epimorphisms and monomorphisms. In addition, we show that Apr̲S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{\mathbf{Apr }}{} \mathbf S $$\end{document} is a (ExtrEpi, ExtrMono)-structured.
引用
收藏
页码:2201 / 2214
页数:13
相关论文
共 50 条
  • [41] Rough grey sets
    Zhang, QS
    Chen, GH
    KYBERNETES, 2004, 33 (02) : 446 - 452
  • [42] Rough sets theory
    Walczak, B
    Massart, DL
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1999, 47 (01) : 1 - 16
  • [43] Linguistic rough sets
    Agarwal, Manish
    Palpanas, Themis
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2016, 7 (06) : 953 - 966
  • [44] Fuzziness in rough sets
    Chakrabarty, K
    Biswas, R
    Nanda, S
    FUZZY SETS AND SYSTEMS, 2000, 110 (02) : 247 - 251
  • [45] Rough Sets in KDD
    Slezak, Dominik
    ADVANCES IN ARTIFICIAL INTELLIGENCE (AI 2015), 2015, 9091
  • [46] A treatise on rough sets
    Pawlak, Z
    TRANSACTIONS ON ROUGH SETS IV, 2005, 3700 : 1 - 17
  • [47] Rough sets of system
    Qiu, Dong
    Shu, Lan
    FUZZY INFORMATION AND ENGINEERING, PROCEEDINGS, 2007, 40 : 808 - +
  • [48] Generalized rough sets
    Rady, EA
    Kozae, AM
    Abd El-Monsef, MME
    CHAOS SOLITONS & FRACTALS, 2004, 21 (01) : 49 - 53
  • [49] Rudiments of rough sets
    Pawlak, Zdzislaw
    Skowron, Andrzej
    INFORMATION SCIENCES, 2007, 177 (01) : 3 - 27
  • [50] ROUGH NEUTROSOPHIC SETS
    Broumi, Said
    Smarandache, Florentin
    Dhar, Mamoni
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (32): : 493 - 502