Electromagnetic Scattering by Periodic Structures

被引:0
作者
G. Schmidt
机构
[1] Weierstrass Institute of Applied Analysis and Stochastics,
关键词
Boundary Condition; Magnetic Field; Electromagnetic Wave; Material Parameter; General Problem;
D O I
10.1023/B:JOTH.0000047360.15053.7d
中图分类号
学科分类号
摘要
This paper is devoted to the scattering of electromagnetic waves by quite general biperiodic structures which may consist of anisotropic optical materials and separate two regions with constant dielectric coefficients. The time-harmonic Maxwell equations are transformed to an equivalent H1-variational problem for the magnetic field in a bounded biperiodic cell with nonlocal boundary conditions. The existence of solutions is shown for all physically relevant material parameters. The uniqueness is proved for all frequencies excluding possibly a discrete set. The results of the general problem are compared with known results for a special case, the conical diffraction.
引用
收藏
页码:5390 / 5406
页数:16
相关论文
共 20 条
  • [1] Abboud T.(1993)Formulation variationnelle des équations de Maxwell dans un réseau bipériodic de ä C. R. Acad. Sci. Paris., Sér I, Math 317 245-248
  • [2] Bao G.(1996)Numerical analysis of diffraction by periodic structures: TM polarization Numer. Math 75 1-16
  • [3] Bao G.(1997)Variational approximation of Maxwell's equations in biperiodic structures SIAM J. Appl. Math 57 364-381
  • [4] Bao G.(2000)On the scattering by a biperiodic structure Proc. Am. Math. Soc. 128 2715-2723
  • [5] Dobson D. C.(1999)Singularities of Maxwell interface problems Model. Math. Anal. Numer. 33 627-649
  • [6] Costabel M.(1993)Optimal design of periodic antireflective structures for the Helmholtz equation Eur. J. Appl. Math 4 321-340
  • [7] Dauge M.(1994)A variational method for electromagnetic diffraction in biperiodic structures Model. Math. Anal. Numer. 28 419-439
  • [8] Nicaise S.(1992)The time-harmonic Maxwell equations in biperiodic structures J. Math. Anal. Appl. 166 507-528
  • [9] Dobson D. C.(1998)Diffraction in periodic structures and optimal design of binary gratings I. Direct problems and gradient formulas Math. Methods Appl. Sci. 21 1297-1342
  • [10] Dobson D. C.(2000)Existence, uniqueness and regularity for solutions of the conical diffraction problem Math. Models Methods Appl. Sci. 10 317-341