Near-optimal discrete optimization for experimental design: a regret minimization approach

被引:0
|
作者
Zeyuan Allen-Zhu
Yuanzhi Li
Aarti Singh
Yining Wang
机构
[1] Microsoft Research Redmond,Machine Learning Department
[2] Carnegie Mellon University,Warrington College of Business
[3] University of Florida,undefined
来源
Mathematical Programming | 2021年 / 186卷
关键词
Experimental design; Spectral sparsification; Regret minimization; 90C27; 62K05;
D O I
暂无
中图分类号
学科分类号
摘要
The experimental design problem concerns the selection of k points from a potentially large design pool of p-dimensional vectors, so as to maximize the statistical efficiency regressed on the selected k design points. Statistical efficiency is measured by optimality criteria, including A(verage), D(eterminant), T(race), E(igen), V(ariance) and G-optimality. Except for the T-optimality, exact optimization is challenging, and for certain instances of D/E-optimality exact or even approximate optimization is proven to be NP-hard. We propose a polynomial-time regret minimization framework to achieve a (1+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\varepsilon )$$\end{document} approximation with only O(p/ε2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(p/\varepsilon ^2)$$\end{document} design points, for all the optimality criteria above. In contrast, to the best of our knowledge, before our work, no polynomial-time algorithm achieves (1+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\varepsilon )$$\end{document} approximations for D/E/G-optimality, and the best poly-time algorithm achieving (1+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\varepsilon )$$\end{document}-approximation for A/V-optimality requires k=Ω(p2/ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=\varOmega (p^2/\varepsilon )$$\end{document} design points.
引用
收藏
页码:439 / 478
页数:39
相关论文
共 29 条
  • [1] Near-optimal discrete optimization for experimental design: a regret minimization approach
    Allen-Zhu, Zeyuan
    Li, Yuanzhi
    Singh, Aarti
    Wang, Yining
    MATHEMATICAL PROGRAMMING, 2021, 186 (1-2) : 439 - 478
  • [2] Beyond the Regret Minimization Barrier: Optimal Algorithms for Stochastic Strongly-Convex Optimization
    Hazan, Elad
    Kale, Satyen
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 2489 - 2512
  • [3] Design of a near-optimal adaptive filter in digital signal processor for active noise control
    Yang, S. M.
    Lee, K. F.
    Tsai, S. E.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2008, 22 (01) : 43 - 54
  • [4] A New Approach to Batch Process Optimization Using Experimental Design
    Wissmann, Paul J.
    Grover, Martha A.
    AICHE JOURNAL, 2009, 55 (02) : 342 - 353
  • [5] An Integrated Approach for Experimental Design, Control, and Optimization of Perfusion Bioreactors
    Rodrigues, Diogo
    IFAC PAPERSONLINE, 2020, 53 (02): : 16878 - 16883
  • [6] Optimal experimental design of ill-posed problems: The METER approach
    Bardow, Andre
    COMPUTERS & CHEMICAL ENGINEERING, 2008, 32 (1-2) : 115 - 124
  • [7] A robust optimization approach to experimental design for model discrimination of dynamical systems
    Skanda, Dominik
    Lebiedz, Dirk
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 405 - 433
  • [8] OPTIMIZATION OF A FORCED DEGRADATION STUDY OF ATORVASTATIN EMPLOYING AN EXPERIMENTAL DESIGN APPROACH
    Gigovska, Maja Hadzieva
    Petkovska, Ana
    Acevska, Jelena
    Nakov, Natalija
    Manchevska, Blagica
    Antovska, Packa
    Ugarkovic, Sonja
    Dimitrovska, Aneta
    MACEDONIAN JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING, 2018, 37 (02) : 111 - 125
  • [9] A robust optimization approach to experimental design for model discrimination of dynamical systems
    Dominik Skanda
    Dirk Lebiedz
    Mathematical Programming, 2013, 141 : 405 - 433
  • [10] QUERCETIN-LOADED LIPOSOMES: FORMULATION OPTIMIZATION THROUGH A D-OPTIMAL EXPERIMENTAL DESIGN
    Tefas, Lucia Ruxandra
    Muntean, Dana-Maria
    Vlase, Laurian
    Porfire, Alina Silvia
    Achim, Marcela
    Tomuta, Ioan
    FARMACIA, 2015, 63 (01) : 26 - 33