Tree-based tensor formats

被引:0
作者
Falcó A. [1 ]
Hackbusch W. [2 ]
Nouy A. [3 ]
机构
[1] ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, San Bartolomé 55, Alfara del Patriarca, 46115, Valencia
[2] Max-Planck-Institut Mathematik in den Naturwissenschaften, Inselstr. 22, Leipzig
[3] Centrale Nantes, LMJL UMR CNRS 6629, 1 rue de la Noë, Nantes Cedex 3
关键词
Best approximation; Tensor spaces; Tree-based rank; Tree-based tensor format;
D O I
10.1007/s40324-018-0177-x
中图分类号
学科分类号
摘要
The main goal of this paper is to study the topological properties of tensors in tree-based Tucker format. These formats include the Tucker format and the Hierarchical Tucker format. A property of the so-called minimal subspaces is used for obtaining a representation of tensors with either bounded or fixed tree-based rank in the underlying algebraic tensor space. We provide a new characterisation of minimal subspaces which extends the existing characterisations. We also introduce a definition of topological tensor spaces in tree-based format, with the introduction of a norm at each vertex of the tree, and prove the existence of best approximations from sets of tensors with bounded tree-based rank, under some assumptions on the norms weaker than in the existing results. © 2018, Sociedad Española de Matemática Aplicada.
引用
收藏
页码:159 / 173
页数:14
相关论文
共 15 条
[1]  
Bachmayr M., Schneider R., Uschmajew A., Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations, Found. Comput. Math., 16, pp. 1423-1472, (2016)
[2]  
Falco A., Hackbusch W., Nouy A., On the Dirac–Frenkel variational principle on tensor Banach spaces, Found. Comput. Math., (2018)
[3]  
Falco A., Hackbusch W., Minimal subspaces in tensor representations, Found. Comput. Math., 12, pp. 765-803, (2012)
[4]  
Falco A., Nouy A., Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces, Numer. Math., 121, pp. 503-530, (2012)
[5]  
Grasedyck L., Kressner D., Tobler C., A literature survey of low-rank tensor approximation techniques, GAMM-Mitt., 36, 1, pp. 53-78, (2013)
[6]  
Greub W.H., Linear Algebra. Graduate Text in Mathematics, (1981)
[7]  
Grothendieck A., Résumé de la th éorie métrique des produit tensoriels topologiques, Bol. Soc. Mat. S, 8, pp. 1-79, (1953)
[8]  
Hackbusch W., Kuhn S., A new scheme for the tensor representation, J. Fourier Anal. Appl., 15, pp. 706-722, (2009)
[9]  
Hackbusch W., Tensor Spaces and Numerical Tensor Calculus, (2012)
[10]  
Hackbusch W., Truncation of tensors in the hierarchical format, Same Issue of SEMA, (2018)