Cardinal Interpolation with Gaussian Kernels

被引:0
作者
T. Hangelbroek
W. Madych
F. Narcowich
J. D. Ward
机构
[1] University of Connecticut Storrs,Department of Mathematics
[2] Texas A&M University,Department of Mathematics
来源
Journal of Fourier Analysis and Applications | 2012年 / 18卷
关键词
Interpolation; Gaussians; Shift-invariant spaces; Radial basis functions; Multipliers; 41A15; 41A25; 41A63; 42B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, interpolation by scaled multi-integer translates of Gaussian kernels is studied. The main result establishes Lp Sobolev error estimates and shows that the error is controlled by the Lp multiplier norm of a Fourier multiplier closely related to the cardinal interpolant, and comparable to the Hilbert transform. Consequently, its multiplier norm is bounded independent of the grid spacing when 1<p<∞, and involves a logarithmic term when p=1 or ∞.
引用
收藏
页码:67 / 86
页数:19
相关论文
共 30 条
[1]  
Buhmann M.D.(1990)Multivariate cardinal interpolation with radial-basis functions Constr. Approx. 6 225-255
[2]  
de Boor C.(1994)Approximation from shift-invariant subspaces of Trans. Am. Math. Soc. 341 787-806
[3]  
DeVore R.A.(1994)(ℝ J. Funct. Anal. 119 37-78
[4]  
Ron A.(2010)) J. Funct. Anal. 259 203-219
[5]  
de Boor C.(1997)The structure of finitely generated shift-invariant spaces in J. Approx. Theory 91 279-319
[6]  
DeVore R.A.(2002)( Trans. Am. Math. Soc. 354 749-776
[7]  
Ron A.(1990)) J. Approx. Theory 60 141-156
[8]  
Hangelbroek T.(1992)Nonlinear approximation using Gaussian kernels J. Approx. Theory 70 94-114
[9]  
Ron A.(1985)On the approximation order of principal shift-invariant subspaces of J. Approx. Theory 43 132-139
[10]  
Johnson M.J.(1974/75)( Indiana Univ. Math. J. 24 677-689