2-Edge-Colored Chromatic Number of Grids is at Most 9

被引:0
作者
Janusz Dybizbański
机构
[1] University of Gdańsk,Institute of Informatics, Faculty of Mathematics, Physics and Informatics
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
2-Edge-colored coloring; Grids; Paley graphs; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A 2-edge-colored graph is a pair (G,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G, \sigma )$$\end{document} where G is a graph, and σ:E(G)→{'+','-'}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma :E(G)\rightarrow \{\text {'}+\text {'},\text {'}-\text {'}\}$$\end{document} is a function which marks all edges with signs. A 2-edge-colored coloring of the 2-edge-colored graph (G,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G, \sigma )$$\end{document} is a homomorphism into a 2-edge-colored graph (H,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H, \delta )$$\end{document}. The 2-edge-colored chromatic number of the 2-edge-colored graph (G,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G, \sigma )$$\end{document} is the minimum order of H. In this paper we show that for every 2-dimensional grid (G,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G, \sigma )$$\end{document} there exists a homomorphism from (G,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G, \sigma )$$\end{document} into the 2-edge-colored Paley graph SP9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SP_9$$\end{document}. Hence, the 2-edge-colored chromatic number of the 2-edge-colored grids is at most 9. This improves the upper bound on this number obtained recently by Bensmail. Additionally, we show that 2-edge-colored chromatic number of the 2-edge-colored grids with 3 columns is at most 8.
引用
收藏
页码:831 / 837
页数:6
相关论文
共 21 条
[1]  
Bensmail J(2019)On the 2-edge-coloured chromatic number of grids Aust. J. Combin. 75 365-384
[2]  
Bensmail J(2017)Analogues of cliques for (m, n)-colored mixed graphs Graph. Combin. 33 735-750
[3]  
Duffy C(2012)Oriented chromatic number of grids is greater than 7 Inf. Process. Lett. 112 113-117
[4]  
Sen S(2003)On the oriented chromatic number of grids Inf. Process. Lett. 85 261-266
[5]  
Dybizbański J(2010)Homomorphisms of 2-edge-colored graphs Discr. Appl. Math. 158 1365-1379
[6]  
Nenca A(2017)Homomorphisms of 2-edge-colored triangle-free planar graphs J. Graph Theory 85 258-277
[7]  
Fertin G(1962)Über selbstkomplementäre graphen Publ. Math. Debrecen 9 270-288
[8]  
Raspaud A(2016)Homomorphisms and colourings of oriented graphs: an updated survey Discr. Math. 339 1993-2005
[9]  
Roychowdhury A(2004)A note on the oriented chromatic number of grids Inf. Process. Lett. 92 65-70
[10]  
Montejano A(undefined)undefined undefined undefined undefined-undefined