Comparison of Advanced Classification Algorithms Based Intrusion Detection from Real-Time Dataset

被引:0
作者
R. Aswanandini
C. Deepa
机构
[1] Sri Ramakrishna College of Arts and Science,
[2] Department of Computer Science,undefined
[3] KG College of Arts and Science,undefined
[4] Sri Ramakrishna College of Arts and Science,undefined
[5] Department of Information Technology,undefined
来源
Automatic Control and Computer Sciences | 2023年 / 57卷
关键词
cyber security; intrusion detection system; fuzzy optimized independent component analysis; hyper-heuristic support vector machines;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:287 / 295
页数:8
相关论文
共 62 条
[1]  
Liao H.-J.(2013)Lin, Yi.-Ch., and Tung, K.-Y/u., Intrusion detection system: A comprehensive review J. Network Comput. Appl. 36 16-24
[2]  
Lin Ch.-H.R.(2017)Internet attacks and intrusion detection system: A review of the literature Online Inf. Rev. 41 171-184
[3]  
Singh R.(2020)Performance analysis of machine learning algorithms in intrusion detection system: A review Procedia Comput. Sci. 171 1251-1260
[4]  
Kumar H.(2020)Web intrusion detection system combined with feature analysis and SVM optimization EURASIP J. Wireless Commun. Networking 2020 33-645
[5]  
Singla R.K.(2019)Machine learning and deep learning methods for intrusion detection systems: A survey Appl. Sci. 9 4396-10431
[6]  
Ketti R.R.(2021)Ch., Abdullah, J., and Ahmad, F., Network intrusion detection system: A systematic study of machine learning and deep learning approaches Trans. Emerging Telecommun. Technol. 32 e4150-18714
[7]  
Saranya T.(2019)Features dimensionality reduction approaches for machine learning-based network intrusion detection Electronics 8 322-423
[8]  
Sridevi S.(2020)A review of the advancement in intrusion detection datasets Procedia Comput. Sci. 167 636-1418
[9]  
Deisy C.(2018)A bi-objective hyper-heuristic support vector machine for big data cyber-security IEEE Access 6 10421-70261
[10]  
Chung T.D.(2019)Efficient distributed denial-of-service attack defence in SDN-based cloud IEEE Access 7 18701-7637