On the time series support vector machine using dynamic time warping kernel for brain activity classification

被引:22
作者
Chaovalitwongse W.A. [1 ]
Pardalos P.M. [2 ]
机构
[1] Rutgers University, Piscataway, NJ
[2] University of Florida, Gainesville, FL
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Brain dynamics; Classification; Dynamic time warping; EEG; Epilepsy; Optimization; Support vector machines; Time series;
D O I
10.1007/s10559-008-0012-y
中图分类号
学科分类号
摘要
A new data mining technique used to classify normal and pre-seizure electroencephalograms is proposed. The technique is based on a dynamic time warping kernel combined with support vector machines (SVMs). The experimental results show that the technique is superior to the standard SVM and improves the brain activity classification. © Springer Science+Business Media, Inc. 2008.
引用
收藏
页码:125 / 138
页数:13
相关论文
共 28 条
[1]  
Babloyantz A., Destexhe A., Low dimensional chaos in an instance of epilepsy, Proc. Nat. Acad. Sci. USA, 83, pp. 3513-3517, (1986)
[2]  
Bertsimas D., Darnell C.R., Soucy R., Portfolio construction through mixed-integer programming at Grantham, Mayo, Van Otterloo and Company, Interfaces, 29, 1, pp. 49-66, (1999)
[3]  
Bradley P.S., Fayyad U., Mangasarian O.L., Mathematical programming for data mining: Formulations and challenges, INFORMS J. Computing, 11, pp. 217-238, (1999)
[4]  
Breiman L., Friedman J., Olsen R., Stone C., Classification and Regression Tree, (1993)
[5]  
Chaovalitwongse W.A., Pardalos P.M., Prokoyev O.A., Reduction of multi-quadratic 0-1 programming problems to linear mixed 0-1 programming problems, Oper. Res. Letters, 32, 6, pp. 517-522, (2004)
[6]  
Chaovalitwongse W.A., Pardalos P.M., Prokoyev O.A., Electroencephalogram (EEG) time series classification: Applications in epilepsy, Ann. Oper. Res., 148, 1, pp. 227-250, (2006)
[7]  
Elger C.E., Lehnertz K., Seizure prediction by non-linear time series analysis of brain electrical activity, Eur. J. Neurosci., 10, pp. 786-789, (1998)
[8]  
Grossman R.L., Kamath C., Kegelmeyer P., Data Mining for Scientific and Engineering Applications, (2001)
[9]  
Hand D.J., Mannila H., Smyth P., Principle of Data Mining, (2001)
[10]  
Hsu C.-W., Lin C.-J., A comparison of methods multi-class support vector machines, IEEE Trans. on Neural Networks, 13, pp. 415-425, (2002)