On a subfamily of starlike functions related to hyperbolic cosine function

被引:0
作者
Mridula Mundalia
S. Sivaprasad Kumar
机构
[1] Delhi Technological University,Department of Applied Mathematics
来源
The Journal of Analysis | 2023年 / 31卷
关键词
Univalent functions; Starlike functions; Radius problems; Hyperbolic Cosine function; Subordination; 30C45; 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and study a new Ma–Minda subclass of starlike functions Sϱ∗,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}^*_{\varrho },$$\end{document} defined as Sϱ∗:=f∈A:zf′(z)f(z)≺coshz=:ϱ(z),z∈D,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {S}}^{*}_{\varrho }:=\left\{ f\in {\mathcal {A}}:\frac{zf'(z)}{f(z)} \prec \cosh \sqrt{z}=:\varrho (z), z\in {\mathbb {D}} \right\} , \end{aligned}$$\end{document}associated with an analytic univalent function coshz,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cosh \sqrt{z},$$\end{document} where we choose the branch of the square root function so that coshz=1+z/2!+z2/4!+⋯.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cosh \sqrt{z}=1+z/2!+z^{2}/{4!}+\cdots .$$\end{document} We establish certain inclusion relations for Sϱ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}^{*}_{\varrho }$$\end{document} and deduce sharp Sϱ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}^{*}_{\varrho }$$\end{document}-radii for certain subclasses of analytic functions.
引用
收藏
页码:2043 / 2062
页数:19
相关论文
共 65 条
[1]  
Ali RM(2008)Neighborhoods of starlike and convex functions associated with parabola Journal of Inequalities and Applications 346279 9-32
[2]  
Subramanian KG(2020)Starlikeness associated with cosine hyperbolic function Mathematics 8 1118-1532
[3]  
Ravichandran V(2011)On a subclass of strongly starlike functions Applied Mathematics Letters 24 27-19
[4]  
Ahuja OP(2021)Starlike functions associated with cosine functions Bulletin of the Iranian Mathematical Society 47 1513-232
[5]  
Alotaibi A(2013)The radius of univalence of the reciprocal of a product of two analytic functions Journal of Analysis 21 1-326
[6]  
Arif M(2019)Radius problems for starlike functions associated with the sine function Bulletin of the Iranian Mathematical Society 45 213-14
[7]  
Alghamdi MA(1973)Some extremal problems for certain families of analytic functions. I Annales Polonici Mathematici 28 297-658
[8]  
Hussain S(2019)Relations of a planar domains bounded by hyperbolas with families of holomorphic functions Journal of Inequalities and Applications 2019 1-386
[9]  
Aouf MK(2000)Conic domains and starlike functions Revue Roumaine de Mathématiques Pures et Appliquées 45 647-604
[10]  
Dziok J(2021)Radius of convexity for integral operators involving Hornich operations Journal of Mathematical Analysis and Applications 502 21-405