A note on the Diophantine equation f(x)f(y)=f(z2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)f(y)=f(z^2)$$\end{document}

被引:0
作者
Yong Zhang
Tianxin Cai
机构
[1] Zhejiang University,Department of Mathematics
关键词
Diophantine equation; Pell’s equation; Elliptic curve; Primary 11D25; Secondary 11D72; 11G05;
D O I
10.1007/s10998-014-0068-6
中图分类号
学科分类号
摘要
Let f∈Q[X]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {\mathbb {Q}}[X]$$\end{document} be a polynomial without multiple roots and deg(f)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$deg(f)\ge 2$$\end{document}. We consider the Diophantine equation f(x)f(y)=f(z2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)f(y)=f(z^2)$$\end{document}. For two classes of irreducible quadratic polynomials, this equation has infinitely many nontrivial integer solutions, if the corresponding Pell’s equations satisfy a condition. For a special cubic polynomial, it has a one-parameter family of rational solutions. For f(X)=X(X2+X+k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(X)=X(X^2+X+k)$$\end{document} and X(X2+kX+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(X^2+kX+1)$$\end{document} there are infinitely many k∈Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \in {\mathbb {Q}}$$\end{document} such that the title equation has rational solutions.
引用
收藏
页码:209 / 215
页数:6
相关论文
共 9 条
  • [1] Bennett MA(2007)The Diophantine equation Indag. Math. 18 507-525
  • [2] Katayama S(2006)On the Diophantine equation J Math Univ Tokushima 40 9-14
  • [3] Schinzel A(1963)Sur l’equation Diophantienne Elem. Math. 18 132-133
  • [4] Sierpinski W(1967)On a Diophantine equation Elem. Math. 22 37-38
  • [5] Szymiczek K(2007)On the Diophantine equation Colloq. Math. 107 1-6
  • [6] Ulas M(2008)On the Diophantine equation Rocky Mt. J. Math. 38 2091-2097
  • [7] Ulas M(2013)On the Diophantine equation Publ. Math. 82 31-41
  • [8] Zhang Y(undefined)undefined undefined undefined undefined-undefined
  • [9] Cai T(undefined)undefined undefined undefined undefined-undefined