Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions

被引:0
作者
A. A. Vladimirov
机构
[1] M. V. Lomonosov Moscow State University,
来源
Mathematical Notes | 2003年 / 74卷
关键词
operator function; self-adjoint operator; quadratic form; uniform operator topology; Hilbert space;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an operator function F defined on the interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\user2{[}\sigma \user2{,}\tau \user2{]} \subset \mathbb{R}$$ \end{document} whose values are semibounded self-adjoint operators in the Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{H}$$ \end{document}. To the operator function F we assign quantities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}_\user1{F}$$ \end{document} and νF(λ) that are, respectively, the number of eigenvalues of the operator function F on the half-interval [σ,τ) and the number of negative eigenvalues of the operator F(λ) for an arbitrary λ ∈ [σ,τ]. We present conditions under which the estimate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}_\user1{F} \geqslant \nu _\user1{F} \user2{(}\tau \user2{)} - \nu _\user1{F} \user2{(}\sigma \user2{)}$$ \end{document} holds. We also establish conditions for the relation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}_\user1{F} \geqslant \nu _\user1{F} \user2{(}\tau \user2{)} - \nu _\user1{F} \user2{(}\sigma \user2{)}$$ \end{document} to hold. The results obtained are applied to ordinary differential operator functions on a finite interval.
引用
收藏
页码:794 / 802
页数:8
相关论文
共 4 条
  • [1] Kamke E.(1938)Neue Herleitung der Oszillationssätze für die linearen selbstadjungierten Randwertaufgaben zweiter Ordnung Math. Z. 44 635-658
  • [2] Mennicken R.(1998)On the eigenvalue accumulation of Sturm–Liouville problems depending nonlinearly on the spectral parameter Math. Nachr. 189 157-170
  • [3] Schmid H.(undefined)undefined undefined undefined undefined-undefined
  • [4] Shkalikov A. A.(undefined)undefined undefined undefined undefined-undefined