Pseudomonotone Variational Inequalities: Convergence of the Auxiliary Problem Method

被引:0
作者
N. El Farouq
机构
[1] Université Blaise Pascal,
来源
Journal of Optimization Theory and Applications | 2001年 / 111卷
关键词
Variational inequalities; optimization problems; generalized monotonicity; pseudomonotonicity; convergence of algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the convergence of the algorithm built on the auxiliary problem principle for solving pseudomonotone (in the sense of Karamardian) variational inequalities.
引用
收藏
页码:305 / 322
页数:17
相关论文
共 32 条
[1]  
Harker P. T.(1990): Mathematical Programming 48 161-220
[2]  
Pang J. S.(1976), Journal of Optimization Theory and Applications 18 445-455
[3]  
Karamardian S.(1990), Journal of Optimization Theory and Applications 66 37-47
[4]  
Karamardian S.(1993)Complementarity Problems over Cones with Monotone and Pseudomonotone Maps Journal of Optimization Theory and Applications 76 399-413
[5]  
Schaible S.(1995)Seven Kinds of Monotone Maps Journal of Optimization Theory and Applications 84 361-376
[6]  
Karamardian S.(1995)Characterizations of Generalized Monotone Maps Journal of Optimization Theory and Applications 87 457-471
[7]  
Schaible S.(1965)Generalized Monotonicity and Generalized Convexity SIAM Journal on Control 3 281-290
[8]  
Crouzeix J. P.(1994)New Classes of Generalized Monotonicity Mathematics of Operations Research 19 691-705
[9]  
Komlosi S.(1994)Pseudoconvex Functions Journal of Optimization Theory and Applications 83 391-403
[10]  
Zhu D.(1997)Variational Inequalities with Generalized Monotone Operators Mathematical Programming 78 305-314