Semi-regular continued fractions and an exact formula for the moments of the Minkowski question mark function

被引:0
作者
Giedrius Alkauskas
机构
[1] Universität für Bodenkultur Wien,Institute of Mathematics, Department of Integrative Biology
[2] Vilnius University,Faculty of Mathematics and Informatics
来源
The Ramanujan Journal | 2011年 / 25卷
关键词
The Minkowski question mark function; Moments of distribution; Periods; Bessel functions; Semi-regular continued fractions; The Farey tree; 11A55; 26A30; 33C10; 11F67;
D O I
暂无
中图分类号
学科分类号
摘要
This paper continues investigations on various integral transforms of the Minkowski question mark function. In this work we finally establish the long-sought formula for the moments, which does not explicitly involve regular continued fractions, though it has a hidden nice interpretation in terms of semi-regular continued fractions. The proof is self-contained and does not rely on previous results by the author.
引用
收藏
页码:359 / 367
页数:8
相关论文
共 13 条
  • [1] Alkauskas G.(2008)An asymptotic formula for the moments of Minkowski question mark function in the interval [0,1] Lith. Math. J. 48 357-367
  • [2] Alkauskas G.(2009)Generating and zeta functions, structure, spectral and analytic properties of the moments of the Minkowski question mark function Involve 2 121-159
  • [3] Alkauskas G.(2010)The Minkowski question mark function: explicit series for the dyadic period function and moments Math. Comput. 79 383-418
  • [4] Alkauskas G.(2010)The moments of Minkowski question mark function: the dyadic period function Glasg. Math. J. 52 41-64
  • [5] Grabner P.J.(2002)Combinatorial and arithmetical properties of linear numeration systems Combinatorica 22 245-267
  • [6] Kirschenhofer P.(2008)Fractal analysis for sets of non-differentiability of Minkowski’s question mark function J. Number Theory 128 2663-2686
  • [7] Tichy R.F.(2006)On a family of singular measures related to Minkowski’s ?( Indag. Math. (New Ser.) 17 45-63
  • [8] Kesseböhmer M.(2008)) function Monatshefte Math. 154 247-264
  • [9] Stratmann B.O.(1987)Multidimensional continued fractions and a Minkowski function Proc. Am. Math. Soc. 99 596-597
  • [10] Lamberger M.(1983)On Minkowski’s singular function J. Number Theory 17 47-51