Constant-Sign Solutions for Systems of Fredholm and Volterra Integral Equations: The Singular Case

被引:0
作者
Ravi P. Agarwal
Donal O’Regan
Patricia J. Y. Wong
机构
[1] Florida Institute of Technology,Department of Mathematical Sciences
[2] National University of Ireland,Department of Mathematics
[3] Nanyang Technological University,School of Electrical and Electronic Engineering
来源
Acta Applicandae Mathematicae | 2008年 / 103卷
关键词
Constant-sign solutions; System of Fredholm integral equations; System of Volterra integral equations; Singular equations; 45B05; 45G15; 45M20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the system of Fredholm integral equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{l}\displaystyle u_{i}(t)=\int_{0}^{T}g_{i}(t,s)[h_{i}(s,u_{1}(s),u_{2}(s),\ldots,u_{n}(s))+k_{i}(s,u_{1}(s),u_{2}(s),\ldots,u_{n}(s))]ds,\\[8pt]\quad t\in[0,T],~1\leq i\leq n\end{array}$$\end{document} and also the system of Volterra integral equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{l}\displaystyle u_{i}(t)=\int_{0}^{t}g_{i}(t,s)[h_{i}(s,u_{1}(s),u_{2}(s),\ldots,u_{n}(s))+k_{i}(s,u_{1}(s),u_{2}(s),\ldots,u_{n}(s))]ds,\\[8pt]\quad t\in[0,T],~1\leq i\leq n\end{array}$$\end{document} where T>0 is fixed and the nonlinearities hi(t,u1,u2,…,un) can be singular at t=0 and uj=0 where j∈{1,2,…,n}. Criteria are offered for the existence of constant-sign solutions, i.e., θiui(t)≥0 for t∈[0,1] and 1≤i≤n, where θi∈{1,−1} is fixed. We also include examples to illustrate the usefulness of the results obtained.
引用
收藏
相关论文
共 45 条
[1]  
Agarwal R.P.(2000)Singular Volterra integral equations Appl. Math. Lett. 13 115-120
[2]  
O’Regan D.(2002)Singular integral equations arising in Homann flow Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9 481-488
[3]  
Agarwal R.P.(2003)Volterra integral equations: the singular case Hokkaido Math. J. 32 371-381
[4]  
O’Regan D.(2004)Constant-sign solutions of a system of Fredholm integral equations Acta Appl. Math. 80 57-94
[5]  
Agarwal R.P.(2004)Eigenvalues of a system of Fredholm integral equations Math. Comput. Model. 39 1113-1150
[6]  
O’Regan D.(2004)Triple solutions of constant sign for a system of Fredholm integral equations Cubo 6 1-45
[7]  
Agarwal R.P.(2005)Constant-sign solutions of a system of integral equations: The semipositone and singular case Asymptotic Anal. 43 47-74
[8]  
O’Regan D.(2007)Constant-sign solutions of a system of integral equations with integrable singularities J. Integr. Equ. Appl. 19 117-142
[9]  
Wong P.J.Y.(2007)Constant-sign solutions of a system of Volterra integral equations Comput. Math. Appl. 54 58-75
[10]  
Agarwal R.P.(1995)An existence theorem of positive solutions to a singular nonlinear boundary value problem Comment. Math. Univ. Carol. 36 609-614