Two-objective metaheuristic optimization for floating gate transistor-based CMOS-MEMS inertial sensors

被引:0
作者
B. Granados-Rojas
M. A. Reyes-Barranca
Y. E. González-Navarro
G. S. Abarca-Jiménez
M. A. Alemán-Arce
S. Mendoza-Acevedo
L. M. Flores-Nava
机构
[1] CINVESTAV IPN,Electrical Engineering Department
[2] Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas - Instituto Politécnico Nacional,undefined
[3] Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo - Instituto Politécnico Nacional,undefined
[4] Centro de Nanociencias y Micro y Nanotecnología - Instituto Politécnico Nacional,undefined
来源
Microsystem Technologies | 2021年 / 27卷
关键词
MEMS; CMOS-MEMS; Genetic algorithm; Floating-gate; FGMOS; Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, a study case is presented in which the design of the layout for a CMOS sensor cell is partially automated by implementing a metaheuristic algorithm to find the best tradeoff between two conflicting objectives (two quantitative opposite and not totally independent yet desired performance or design qualities) among the set of feasible layout and electronic device configurations within a constricted search space. The feasibility of a solution (a particular configuration) and its capability to fulfill every requested objective, is determined by its compliance to the CMOS-MEMS design rules and fabrication process. Any given solution besides showing optimal or very near-to-the-optimal characteristics, must be suitable to be fabricated in the CMOS conventional process which for this case is a 0.5μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.5\,\mu \hbox {m}$$\end{document}, 3-metal 2-poly N-well fabrication, beside this, since monolithic inertial sensors generally contains embedded movable electromechanical parts a surface micromachining must be considered. Simulation data and behavior of the bio-inspired metaheuristic algorithm used during the design process are presented, as well as electromechanical simulation results based the automatic-generated solutions.
引用
收藏
页码:2889 / 2901
页数:12
相关论文
共 10 条
  • [1] Abarca-Jimnez GS(2018)Inertial sensing MEMS device using a floating-gate MOS transistor as transducer by means of modifying the capacitance associated to the floating gate Microsyst Technol 24 2753-2764
  • [2] Bykov IS(2017)On distance Gray codes J Appl Ind Math 11 185-192
  • [3] Aleksei LP(1977)Pareto optimality in multiobjective problems Appl Math Optim 4 41-59
  • [4] Censor Y(1996)Genetic algorithms for flowshop scheduling problems Comput Ind Eng 30 1061-1071
  • [5] Murata Tadahiko(2008)Large scale evolutionary optimization using cooperative coevolution Inform Sci 178 2985-2999
  • [6] Ishibuchi Hisao(undefined)undefined undefined undefined undefined-undefined
  • [7] Tanaka Hideo(undefined)undefined undefined undefined undefined-undefined
  • [8] Yang Z(undefined)undefined undefined undefined undefined-undefined
  • [9] Tang K(undefined)undefined undefined undefined undefined-undefined
  • [10] Yao X(undefined)undefined undefined undefined undefined-undefined