Membranes prime the RapGEF EPAC1 to transduce cAMP signaling

被引:0
作者
Candice Sartre
François Peurois
Marie Ley
Marie-Hélène Kryszke
Wenhua Zhang
Delphine Courilleau
Rodolphe Fischmeister
Yves Ambroise
Mahel Zeghouf
Sarah Cianferani
Yann Ferrandez
Jacqueline Cherfils
机构
[1] Ecole Normale Supérieure Paris-Saclay,Université Paris
[2] CNRS,Saclay
[3] IPHC,Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg
[4] CNRS UMR 7178,Université Paris
[5] Infrastructure Nationale de Protéomique ProFI – FR2048,Saclay
[6] IPSIT-CIBLOT,Université Paris
[7] Inserm US31,Saclay
[8] CNRS UAR3679,Université Paris
[9] INSERM,Saclay
[10] UMR-S 1180,undefined
[11] CEA,undefined
[12] Service de Chimie Bioorganique et de Marquage,undefined
来源
Nature Communications | / 14卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
EPAC1, a cAMP-activated GEF for Rap GTPases, is a major transducer of cAMP signaling and a therapeutic target in cardiac diseases. The recent discovery that cAMP is compartmentalized in membrane-proximal nanodomains challenged the current model of EPAC1 activation in the cytosol. Here, we discover that anionic membranes are a major component of EPAC1 activation. We find that anionic membranes activate EPAC1 independently of cAMP, increase its affinity for cAMP by two orders of magnitude, and synergize with cAMP to yield maximal GEF activity. In the cell cytosol, where cAMP concentration is low, EPAC1 must thus be primed by membranes to bind cAMP. Examination of the cell-active chemical CE3F4 in this framework further reveals that it targets only fully activated EPAC1. Together, our findings reformulate previous concepts of cAMP signaling through EPAC proteins, with important implications for drug discovery.
引用
收藏
相关论文
共 163 条
[11]  
Zerio A(2006)Epac proteins: multi-purpose cAMP targets Trends Biochem. Sci. 31 680-897
[12]  
Lobo MJ(2016)Cyclic AMP sensor EPAC proteins and their role in cardiovascular function and disease Circ. Res. 118 881-1053
[13]  
Taylor SS(2018)Intracellular cAMP sensor EPAC: physiology, pathophysiology, and therapeutics development Physiol. Rev. 98 919-92
[14]  
Ilouz R(2018)Insights into exchange factor directly activated by cAMP (EPAC) as potential target for cancer treatment Mol. Cell Biochem. 447 77-3041
[15]  
Zhang P(2016)Critical role for Epac1 in inflammatory pain controlled by GRK2-mediated phosphorylation of Epac1 Proc. Natl Acad. Sci. USA 113 3036-214
[16]  
Kornev AP(2020)Epac1 inhibition ameliorates pathological angiogenesis through coordinated activation of Notch and suppression of VEGF signaling Sci. Adv. 6 eaay3566-628
[17]  
Kawasaki H(2018)Epac function and cAMP scaffolds in the heart and lung J. Cardiovasc. Dev. Dis. 5 9-127
[18]  
de Rooij J(2015)The future of EPAC-targeted therapies: agonism versus antagonism Trends Pharm. Sci. 36 203-20836
[19]  
Bos JL(2006)Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state Nature 439 625-1177
[20]  
Lezoualc’h F(2008)Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B Nature 455 124-38556