Congruent numbers, elliptic curves, and the passage from the local to the global

被引:0
作者
Dalawat C.S. [1 ]
机构
[1] Harish-Chandra Research Institute, Jhunsi, Allahabad 211 019, Chhatnag Road
关键词
Birch and Swinnerton-Dyer conjecture; Congruent numbers; Elliptic curves; Hasse principle; Shafarevich-Tate conjecture;
D O I
10.1007/s12045-009-0113-6
中图分类号
学科分类号
摘要
The ancient unsolved problem of congruent numbers has been reduced to one of the major questions of contemporary arithmetic: the finiteness of the number of curves over Q which become isomorphic at every place to a given curve. We give an elementary introduction to congruent numbers and their conjectural characterisation, discuss local-to-global issues leading to the finiteness problem, and list a few results and conjectures in the arithmetic theory of elliptic curves. © 2009 Indian Academy of Sciences.
引用
收藏
页码:1183 / 1205
页数:22
相关论文
共 18 条
[1]  
Coates J., Wiles A., On the conjecture of Birch and Swinnerton-Dyer, Invent. Math., 39, 3, pp. 223-251, (1977)
[2]  
Tunnell J., A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72, 2, pp. 323-334, (1983)
[3]  
Rubin K., The "main conjectures" of Iwasawa theory for imaginary quadratic fields, Invent. Math., 103, 1, pp. 25-68, (1991)
[4]  
Mazur B., On the passage from local to global in number theory, Bull. Amer. Math. Soc. (N.S.), 29, 1, pp. 14-50, (1993)
[5]  
Heegner K., Diophantische Analysis und Modulfunktionen, Math. Z., 56, pp. 227-253, (1952)
[6]  
Cassels J., Diophantine equations with special reference to elliptic curves, J. London Math. Soc., 41
[7]  
Tate J., The arithmetic of elliptic curves, Invent. Math., 23, pp. 179-206, (1974)
[8]  
Mazur B., Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math., 47, pp. 33-186, (1978)
[9]  
Serre J.-P., Tate J., Good reduction of abelian varieties, Ann. Of Math., 88, 2, pp. 492-517, (1968)
[10]  
Faltings G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., 73, 3, pp. 349-366, (1983)