A Renormalisation Group Method. V. A Single Renormalisation Group Step

被引:0
作者
David C. Brydges
Gordon Slade
机构
[1] University of British Columbia,Department of Mathematics
来源
Journal of Statistical Physics | 2015年 / 159卷
关键词
Renormalisation group; Critical phenomena; Self-avoiding walk; 82B28; 82B27;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is the fifth in a series devoted to the development of a rigorous renormalisation group method applicable to lattice field theories containing boson and/or fermion fields, and comprises the core of the method. In the renormalisation group method, increasingly large scales are studied in a progressive manner, with an interaction parametrised by a field polynomial which evolves with the scale under the renormalisation group map. In our context, the progressive analysis is performed via a finite-range covariance decomposition. Perturbative calculations are used to track the flow of the coupling constants of the evolving polynomial, but on their own perturbative calculations are insufficient to control error terms and to obtain mathematically rigorous results. In this paper, we define an additional non-perturbative coordinate, which together with the flow of coupling constants defines the complete evolution of the renormalisation group map. We specify conditions under which the non-perturbative coordinate is contractive under a single renormalisation group step. Our framework is essentially combinatorial, but its implementation relies on analytic results developed earlier in the series of papers. The results of this paper are applied elsewhere to analyse the critical behaviour of the 4-dimensional continuous-time weakly self-avoiding walk and of the 4-dimensional n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-component |φ|4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\varphi |^4$$\end{document} model. In particular, the existence of a logarithmic correction to mean-field scaling for the susceptibility can be proved for both models, together with other facts about critical exponents and critical behaviour.
引用
收藏
页码:589 / 667
页数:78
相关论文
共 47 条
[1]  
Bauerschmidt R(2013)A simple method for finite range decomposition of quadratic forms and Gaussian fields Probab. Theory Related Fields 157 817-845
[2]  
Bauerschmidt R(2014)Scaling limits and critical behaviour of the J. Stat. Phys. 157 692-742
[3]  
Brydges DC(1978)-dimensional Commun. Math. Phys. 59 143-166
[4]  
Slade G(1980)-component Commun. Math. Phys. 71 95-130
[5]  
Benfatto G(2003) spin model Commun. Math. Phys. 239 549-584
[6]  
Cassandro M(1990)Some probabilistic techniques in field theory Commun. Math. Phys. 129 351-392
[7]  
Gallavotti G(1992)On the ultraviolet stability in the Euclidean scalar field theories Ann. Probab. 20 82-124
[8]  
Nicolò F(2004)Green’s function for a hierarchical self-avoiding walk in four dimensions J. Stat. Phys. 115 415-449
[9]  
Oliveri E(2009)Grad Probab. Surv. 6 34-61
[10]  
Presutti E(2013) perturbations of massless Gaussian fields Rev. Math. Phys. 25 1330010-1318