Identifying tweets of personal health experience through word embedding and LSTM neural network

被引:0
作者
Keyuan Jiang
Shichao Feng
Qunhao Song
Ricardo A. Calix
Matrika Gupta
Gordon R. Bernard
机构
[1] Purdue University Northwest,Department of Computer Information Technology and Graphics
[2] Vanderbilt University,Department of Medicine
来源
BMC Bioinformatics | / 19卷
关键词
Health surveillance; Pharmacovigilance; Social media; Twitter; Deep learning; Unsupervised feature learning; LSTM neural network;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 62 条
[1]  
Charles-Smith LE(2015)Using social media for actionable disease surveillance and outbreak management: a systematic literature review PLoS One 10 202-212
[2]  
Reynolds TL(2015)Utilizing social media data for pharmacovigilance: a review J Biomed Inform 54 878-888
[3]  
Cameron MA(2015)Systematic review on the prevalence, frequency and comparative value of adverse events data in social media Br J Clin Pharmacol 80 343-350
[4]  
Conway M(2014)Digital drug safety surveillance: monitoring pharmaceutical products in twitter Drug Saf 37 924-933
[5]  
Lau EH(2014)Pharmacovigilance on twitter? Mining tweets for adverse drug reactions AMIA Annu Symp Proc 2014 443-444
[6]  
Olsen JM(2015)The role of social media in reducing stigma and discrimination Br J Psychiatry 206 247-250
[7]  
Sarker A(2015)The canary in the coal mine tweets: social media reveals public perceptions of non-medical use of opioids PLoS One 10 333-338
[8]  
Ginn R(2013)The presentation of seizures and epilepsy in YouTube videos Epilepsy Behav 27 85-117
[9]  
Nikfarjam A(2014)Sources of information and behavioral patterns in online health forums: observational study J Med Internet Res 16 179-211
[10]  
O’Connor K(2013)Using twitter to examine smoking behavior and perceptions of emerging tobacco products J Med Internet Res 15 2267-2273