A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A* search

被引:0
作者
Mariem Besbes
Marc Zolghadri
Roberta Costa Affonso
Faouzi Masmoudi
Mohamed Haddar
机构
[1] Quartz-Supmeca,
[2] University of Sfax,undefined
来源
Journal of Intelligent Manufacturing | 2020年 / 31卷
关键词
Manufacturing systems design; Facility layout problem; Genetic algorithm; search algorithm; Monte Carlo simulation;
D O I
暂无
中图分类号
学科分类号
摘要
This work proposes a new methodology and mathematical formulation to address the facility layout problem. The goal is to minimise the total material handling cost subjected to production-derived constraints. This cost is a function of the distance that the products should cover within the facility. The first idea is to use the A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{A}}^{ *} $$\end{document} algorithm to identify the distances between workstations in a more realistic way. A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{A}}^{ *} $$\end{document} determines the shortest path within the facility that contains obstacles and transportation routes. The second idea is to combine a genetic algorithm and the A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{A}}^{ *} $$\end{document} algorithm with a homogenous methodology to improve the quality of the facility layouts. In an iterative way, the layout solution space is explored using the genetic algorithm. We study the impacts of the appropriate crossover and mutation operators and the values of the parameters used in this algorithm on the cost of the proposed arrangements. These operators and parameter values are fine-tuned using Monte Carlo simulations. The facility arrangements are all compared and discussed based on their material handling cost associated with the Euclidean distance, rectilinear distance, and A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{A}}^{ *} $$\end{document} algorithm. Finally, we present a set of conclusions regarding the suggested methodology and discuss our future research goals.
引用
收藏
页码:615 / 640
页数:25
相关论文
共 197 条
[1]  
Ahmadi A(2016)An efficient multiple-stage mathematical programming method for advanced single and multi-floor facility layout problems Journal of applied Mathematical Modelling 40 5605-5620
[2]  
Jokar MRA(2017)A survey on multi-floor facility layout problems Journal of Computers and industrial engineering 107 158-170
[3]  
Ahmadi A(2013)A non dominated ranking multi objective genetic algorithm and electre method for unequal area facility layout problems Expert Systems with Applications 40 4812-4819
[4]  
Pishvaee MS(2014)Developing a multiobjective genetic optimisation approach for an operational design of a manual mixed-model assembly line with walking workers Journal of Intelligent Manufacturing 42 136-158
[5]  
Jokar MRA(2011)Tuning genetic algorithm parameters to improve convergence time International Journal of Chemical Engineering 84 565-579
[6]  
Aiello G(1964)Allocating facilities with CRAFT Harvard Business Review 38 4369-4383
[7]  
Scalia GL(2015)Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization Journal of Intelligent Manufacturing 40 918-932
[8]  
Enea M(2016)Optimization of facility layout design with ambiguity by an efficient fuzzy multivariate approach The International Journal of Advanced Manufacturing Technology 77 689-703
[9]  
Al-Zuheri A(2000)Facility layout optimization using simulation and genetic algorithms International Journal of Production Research 34 2565-2585
[10]  
Luong L(1994)An improvement type layout algorithm for single and multiple-floor facilities Management Science 49 1169-1174