Spectral Estimates for Resolvent Differences of Self-Adjoint Elliptic Operators

被引:0
作者
Jussi Behrndt
Matthias Langer
Vladimir Lotoreichik
机构
[1] Institut für Numerische Mathematik,Technische Universität Graz
[2] University of Strathclyde,Department of Mathematics and Statistics
来源
Integral Equations and Operator Theory | 2013年 / 77卷
关键词
35P05; 35P20; 47F05; 47L20; 81Q10; 81Q15; Elliptic operator; self-adjoint extension; operator ideal; δ-potential; quasi boundary triple; Weyl function;
D O I
暂无
中图分类号
学科分类号
摘要
The concept of quasi boundary triples and Weyl functions from extension theory of symmetric operators in Hilbert spaces is developed further and spectral estimates for resolvent differences of two self-adjoint extensions in terms of general operator ideals are proved. The abstract results are applied to self-adjoint realizations of second order elliptic differential operators on bounded and exterior domains, and partial differential operators with δ-potentials supported on hypersurfaces are studied.
引用
收藏
页码:1 / 37
页数:36
相关论文
共 87 条
  • [1] Amrein W.O.(2004) operators: a generalisation of Weyl–Titchmarsh theory J. Comput. Appl. Math. 171 1-26
  • [2] Pearson D.B.(1987)Exactly solvable models of sphere interactions in quantum mechanics J. Phys. A 20 3687-3712
  • [3] Antoine J.-P.(2011)The Dirichlet-to-Neumann operator on rough domains J. Differ. Equ. 251 2100-2124
  • [4] Gesztesy F.(2010)Spectral theory for perturbed Krein Laplacians in nonsmooth domains Adv. Math. 223 1372-1467
  • [5] Shabani J.(1965)Non-local boundary value problems for elliptic operators Am. J. Math. 87 315-362
  • [6] Arendt W.(2010)Elliptic boundary value problems with λ-dependent boundary conditions J. Differ. Equ. 249 2663-2687
  • [7] ter Elst A.F.M.(2007)Boundary value problems for elliptic partial differential operators on bounded domains J. Funct. Anal. 243 536-565
  • [8] Ashbaugh M.S.(2010)A remark on Schatten–von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains J. Math. Anal. Appl. 371 750-758
  • [9] Gesztesy F.(2013)Schrödinger operators with δ and δ′-potentials supported on hypersurfaces Ann. Henri Poincaré 14 385-423
  • [10] Mitrea M.(2008)Scattering matrices and Weyl functions Proc. Lond. Math. Soc. 97 568-598