Quantum-dot microlasers based on whispering gallery mode resonators

被引:0
作者
A. E. Zhukov
N. V. Kryzhanovskaya
E. I. Moiseev
M. V. Maximov
机构
[1] Laboratory of quantum optoelectronics,
[2] National Research University Higher School of Economics,undefined
[3] Kantemirovskaya 3A,undefined
[4] Nanophotonics laboratory,undefined
[5] Alferov University,undefined
来源
Light: Science & Applications | / 10卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The subject of this paper is microlasers with the emission spectra determined by the whispering gallery modes. Owing to the total internal reflection of light on the sidewalls, a high Q-factor is achieved until the diameter is comparable to the wavelength. The light emission predominantly occurs in the plane of the structure, which facilitates the microlaser integration with other elements. We focus on microdisk lasers with various types of the In(Ga)As quantum dots (QDs). Deep localization of charge carriers in spatially separated regions suppresses the lateral diffusion and makes it possible to overcome the undesirable effect of non-radiative recombination in deep mesas. Thus, using conventional epitaxial structures and relatively simple post-growth processing methods, it is possible to realize small microlasers capable of operating without temperature stabilization at elevated temperatures. The low sensitivity of QDs to epitaxial and manufacturing defects allows fabricating microlasers using III–V heterostructures grown on silicon.
引用
收藏
相关论文
共 106 条
[1]  
Sun C(2015)Single-chip microprocessor that communicates directly using light Nature 528 534-538
[2]  
Soda H(1979)GaInAsP/InP surface emitting injection lasers Jpn. J. Appl. Phys. 18 2329-2330
[3]  
Iga K(1987)Microcavity GalaAs/GaAs surface-emitting laser with Electron. Lett. 23 134-135
[4]  
Kinoshita S(1989) = 6 mA Appl. Phys. Lett. 55 221-222
[5]  
Koyama F(1989)Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser Electron. Lett. 25 1123-1124
[6]  
Koyama F(1996)Low-threshold electrically pumped vertical-cavity surface-emitting microlasers Appl. Phys. Lett. 69 1385-1387
[7]  
Kinoshita S(1999)Selective oxidation of buried AlGaAs versus AlAs layers IEEE Photon. Technol. Lett. 11 934-936
[8]  
Iga K(2006)Intracavity contacts for low-threshold oxide-confined vertical-cavity surface-emitting lasers Electron. Lett. 42 1281-1282
[9]  
Jewell JL(2012)High-efficiency, high-speed VCSELs with deep oxidation layers Electron. Lett. 48 1292-1294
[10]  
Choquette KD(2019)56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s Photon. Res. 7 121-136