Extremes of Shepp statistics for fractional Brownian motion

被引:0
作者
ZhongQuan Tan
Yang Yang
机构
[1] Jiaxing University,College of Mathematics, Physics and Information Engineering
[2] Nanjing Audit University,School of Mathematics and Statistics
来源
Science China Mathematics | 2015年 / 58卷
关键词
extremes; Shepp statistics; fractional Brownian motion; exact tail asymptotic; Gumbel limit law; 60G15; 60G70;
D O I
暂无
中图分类号
学科分类号
摘要
Define the incremental fractional Brownian field with parameter H ∈ (0, 1) by ZH(τ, s) = BH(s +τ)-BH(s), where BH(s) is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). We firstly derive the exact tail asymptotics for the maximum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_H^* (T) = \max _{(\tau ,s) \in [a,b] \times [0,T]} Z_H (\tau ,s)/\tau ^H $\end{document} of the standardised fractional Brownian motion field, with any fixed 0 < a < b < ∞ and T > 0; and we, furthermore, extend the obtained result to the case that T is a positive random variable independent of {BH(s), s ⩾ 0}. As a by-product, we obtain the Gumbel limit law for MH* (T) as T → ∞.
引用
收藏
页码:1779 / 1794
页数:15
相关论文
共 59 条
[1]  
Arendarczyk M(2011)Asymptotics of supremum distribution of a Gaussian process over a Weibullian time Bernoulli 17 194-210
[2]  
Debicki K(2012)Exact asymptotics of supremum of a stationary Gaussian process over a random interval Statist Probab Lett 82 645-652
[3]  
Arendarczyk M(1964)Limit theorems for the maximum term in stationary sequences Ann Math Statist 35 502-516
[4]  
Debicki K(1974)Sojourns and extremes of Gaussian processes Ann Probab 2 999-1026
[5]  
Berman S M(2006)Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices Ann Probab 34 80-121
[6]  
Berman S M(1980)The asymptotic distribution of the scan statistic under uniformity Ann Probab 8 828-840
[7]  
Chan H P(2006)Large buffer asymptotics for generalized processor sharing queues with Gaussian inputs Queueing Syst 54 111-120
[8]  
Lai T L(2004)The supremum of a Gaussian process over a random interval Statist Probab Lett 68 221-234
[9]  
Cressie N(1987)Limit laws of Erdös-Rényi-Shepp type Ann Probab 15 1363-1386
[10]  
Debicki K(2001)Multiscale testing of qualitative hypotheses Ann Statist 29 124-152