Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces

被引:0
作者
Ding-huai Wang
Jiang Zhou
机构
[1] Anhui Normal University,School of Mathematics and Statistics
[2] Xinjiang University,College of Mathematics and System Sciences
来源
Acta Mathematicae Applicatae Sinica, English Series | 2023年 / 39卷
关键词
BMO space; characterization; commutator; Lipschitz space; Morrey space; 47B47; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the weak Morrey space WMqp is contained in the Morrey space Mq1p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{{q_1}}^p$$\end{document} for 1 ≤ q1 < q ≤ p < ∞. As applications, we show that if the commutator [b, T] is bounded from Lp to Lp,∞ for some p ∈ (1, ∞), then b ∈ BMO, where T is a Calderón-Zygmund operator. Also, for 1 < p ≤ q < ∞, b ∈ BMO if and only if [6, T] is bounded from Mqp to WMqp. For b belonging to Lipschitz class, we obtain similar results.
引用
收藏
页码:583 / 590
页数:7
相关论文
共 18 条
  • [1] Adams DR(1975)A note on Riesz potentials Duke Math. J. 42 765-778
  • [2] Coifman R(1976)Factorization theorems for Hardy spaces in several variables Ann. of Math. 103 611-635
  • [3] Rochberg R(1984)Maximal functions measuring smoothness Mem. Amer. Math. Soc. 47 293-432
  • [4] Weiss G(1997)A characterization of BMO via commutators for some operators Northeast. Math. J. 13 422-270
  • [5] Devore RA(1978)Mean oscillation and commutators of singular integral operators Ark. Math. 16 263-114
  • [6] Sharpley RC(1983)Elementary characterization of the Morrey-Campanato spaces Lect. Notes in Math. 992 101-1014
  • [7] Ding Y(1994)Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data Comm. Partial Differential Equations 19 959-17
  • [8] Janson S(1995)Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss Indiana Univ. Math. J. 44 1-87
  • [9] Janson S(1969)On the theory J. Funct. Anal. 4 71-234
  • [10] Taibleson M(2013) spaces Pacific J. Math. 264 221-429