On the Meir–Keeler theorem in quasi-metric spaces

被引:0
作者
Mecheraoui Rachid
Zoran D. Mitrović
Vahid Parvaneh
Zohreh Bagheri
机构
[1] Abbes Laghrour University,Faculty of Sciences and Technology
[2] University of Banja Luka,Faculty of Electrical Engineering
[3] Islamic Azad University,Department of Mathematics, Gilan
[4] Islamic Azad University,e
来源
Journal of Fixed Point Theory and Applications | 2021年 / 23卷
关键词
Meir–Keeler contractions; rational contractions; fixed point; Musielak–Orlicz spaces; quasi-metric spaces; 47H10; 54H25; 46J10;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to show that the Meir–Keeler contraction principle, as well as some of its generalizations, is, in general, not true in quasi-metric spaces. After that, we suggest a new Meir–Keeler type contraction that guaranties the existence and uniqueness of fixed points in quasi-metric spaces. Finally, to illustrate the wide usability of our findings, we discuss the existence and uniqueness of solutions for an integro-differential equation in Musielak–Orlicz spaces.
引用
收藏
相关论文
共 78 条
[1]  
Alegre C(2016)On the fixed point theory in bicomplete quasi-metric spaces J. Nonlinear Sci. Appl. 9 5245-5251
[2]  
Dag H(2014)A proposal to the study of contractions in quasi-metric spaces Discrete Dyn. Nat. Soc. 2015 969726-3361
[3]  
Romaguera S(2016)A new concept of J. Nonlinear Sci. Appl. 9 3354-251
[4]  
Tirado P(1976)-contraction on quasi metric space Trans. Am. Math. Soc. 215 241-1458
[5]  
Alsulami HH(1975)Fixed point theorems for mappings satisfying inwardness conditions Indian J. Pure Appl. Math. 6 1455-42
[6]  
Karapınar E(1972)An extension of Banach contraction principle through rational expression Boll. Unione Mat. Ital. 5 26-773
[7]  
Khojasteh F(2015)Fixed points of contractive functions J. Nonlinear Convex Anal. 16 767-1799
[8]  
Roldán-López-de-Hierro AF(2021)A remark on weakly contractive mappings AIMS Math. 6 1781-158
[9]  
Altun I(1984)The Meir–Keeler type contractions in extended modular b-metric spaces with an application Math. Stud. 52 156-60
[10]  
Al Arifi N(2015)A unique fixed point theorem in metric spaces Topol. Appl. 184 54-1301