Kantowski–Sachs perfect fluid cosmological model in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2$$\end{document}- Gravity

被引:0
作者
T. Vinutha
K. Venkata Vasavi
K. Niharika
G. Satyanarayana
机构
[1] Andhra University,Department of Applied Mathematics, AUCST
关键词
Kantowski–Sachs space time; Quadratic functional form;
D O I
10.1007/s12648-022-02470-5
中图分类号
学科分类号
摘要
In the present study, the Kantowski–Sachs perfect fluid cosmological model in modified theory suggested by Harko et al. [1] is obtained. In this paper, the functional form f(R,T)=f1(R)+f2(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R,T)=f_1(R)+f_2(T)$$\end{document}=R+αR2+λT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R + \alpha R^2 +\lambda T$$\end{document} of f(R, T) gravity where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} are constants, R is Ricci scalar, and T is the trace of energy–momentum tensor is considered. To get the solutions to the field equations, the following two conditions are used: (i) hybrid expansion law of the scale factor and (ii) expansion scalar is proportional to the shear scalar. We have computed dynamical and physical parameters, and their relevance to modern cosmology is also explained with the help of their plots. For various values of α1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1$$\end{document} and a fixed value of α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _2$$\end{document}, it is noticed that the pressure is negative, whereas energy density is positive representing the accelerating universe. We have observed that NEC is satisfied for all the values of α1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1$$\end{document} and a fixed value of α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _2$$\end{document}, which results in the quintessence region of the EoS parameter. The stability of the solutions of the obtained model is verified using the perturbation technique. Finally, all cosmological parameters are compatible with recent observational data.
引用
收藏
页码:1621 / 1632
页数:11
相关论文
共 174 条
[1]  
Harko T(2011)undefined Phys. Rev. D 84 024020-undefined
[2]  
Lobo FSN(1982)undefined Phys. Lett. B 116 141-undefined
[3]  
Nojiri S(2001)undefined Indian J. Pure Appl. Math. 32 199-undefined
[4]  
Odintsov S D(1980)undefined Phys. Rev. D 21 2171-undefined
[5]  
Kibble TWB(2015)undefined Int. J. Geom. Methods Mod. Phys. 12 1550101-undefined
[6]  
Turok N(2016)undefined J. Exp. Theor. Phys. 122 331-undefined
[7]  
Mahanta P(2016)undefined Commum. Theor. Phys. 65 301-undefined
[8]  
Mukharjee A(2011)undefined Phys. Rept. 505 59-undefined
[9]  
JStachel J(2010)undefined Living Rev. Relativ. 13 3-undefined
[10]  
Momeni D(2015)undefined Universe 1 123-undefined