(Semi)topological quotient BCK-algebras

被引:4
作者
Kouhestani N. [1 ]
Mehrshad S. [2 ]
机构
[1] Department of Mathematics, University of Sistan and Baluchestan, Zahedan
[2] Department of Mathematics, University of Zabol, Zabol
关键词
Connected; Ideal; Normality; Regularity; Semitopological and topological BCK-algebra; T[!sub]i[!/sub] spaces;
D O I
10.1007/s13370-017-0513-9
中图分类号
学科分类号
摘要
In this paper we study separation axioms and connected properties on (semi)topological quotient BCK-algebras. We bring some conditions which under a (semi)topological quotient BCK-algebra have at least one of the topological properties T1, Hausdorff, regular, normal, connected, locally connected, totally disconnected space. © 2017, African Mathematical Union and Springer-Verlag GmbH Deutschland.
引用
收藏
页码:1235 / 1251
页数:16
相关论文
共 13 条
[1]  
Arhangel'skii A., Tkachenko M., Topological groups and related structures, (2008)
[2]  
Borzooei R.A., Rezaei G.R., Kouhestani N., On (semi)topological BL-algebras, Iran J Math Sci Inform, 6, 1, pp. 59-77, (2011)
[3]  
Borzooei R.A., Rezaei G.R., Kouhestani N., Separation axioms in (semi)topological quotient BL-algebras, Soft Comput, 16, 7, pp. 1219-1227, (2012)
[4]  
Borzooei R.A., Rezaei G.R., Kouhestani N., Metrizability on (semi)topological BL-algebras, Soft Comput, 16, 10, pp. 1681-1690, (2012)
[5]  
Bourbaki N., Elements of mathematics general topology, (1966)
[6]  
Dudek W.A., New characterization of ideals in BCC-algebra, Novi Sad J Math, 29, 1, pp. 1-6, (1999)
[7]  
Dvurecenskij A., Pulmannova S., New trends in quantum structures, (2000)
[8]  
Hoo C.S., Topological MV -algebras, Topol Appl, 81, pp. 103-121, (1997)
[9]  
Imai Y., Iseki K., On axiom system of propositional calculi XIV, Proc Jpn Acad, 42, pp. 19-22, (1966)
[10]  
Soo Lee D., Neun Ryn D., Notes on topological BCK-algebras, Sci Math, 1, 2, pp. 231-235, (1998)