Cluster algebras in algebraic lie theory

被引:0
作者
Ch. Geiss
B. Leclerc
J. Schröer
机构
[1] Instituto de Matemáticas Universidad Nacional Autónoma de México Ciudad Universitaria,
[2] LMNO UMR 6139 Université de Caen Basse-Normandie CNRS,undefined
[3] Mathematisches Institut Universität Bonn Endenicher Allee 60,undefined
来源
Transformation Groups | 2013年 / 18卷
关键词
Cluster Variable; Cluster Algebra; Coordinate Ring; Quantum Cluster; Preprojective Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We survey some recent constructions of cluster algebra structures on coordinate rings of unipotent subgroups and unipotent cells of Kac–Moody groups. We also review a quantized version of these results.
引用
收藏
页码:149 / 178
页数:29
相关论文
共 70 条
[11]  
Reiten I(2002)Cluster algebras I: Foundations J. Amer. Math. Soc. 15 497-529
[12]  
Scott J(2003)Cluster algebras II: Finite type classification Invent. Math. 154 63-121
[13]  
Buan A(2007)Cluster algebras IV: Coefficients Compos. Math. 143 112-164
[14]  
Iyama O(2003)Cluster algebras and Poisson geometry Moscow Math. J. 3 899-934
[15]  
Reiten I(2005)Semicanonical bases and preprojective algebras Ann. Scient. Éc. Norm. Sup. 38 193-253
[16]  
Smith D(2006)Rigid modules over preprojective algebras Invent. Math. 165 589-632
[17]  
Chevalier N(2007)Auslander algebras and initial seeds for cluster algebras J. London Math. Soc. 75 718-740
[18]  
Demonet L(2007)Semicanonical bases and preprojective algebras II: A multiplication formula Compositio Math. 143 1313-1334
[19]  
Derksen H(2008)Partial flag varieties and preprojective algebras Ann. Inst. Fourier (Grenoble) 58 825-876
[20]  
Weyman J(2011)Kac–Moody groups and cluster algebras Adv. Math. 228 329-433