Two new approaches to obtaining estimates in the Danzer-Grünbaum problem

被引:0
作者
L. V. Buchok
机构
[1] Moscow State University,
来源
Mathematical Notes | 2010年 / 87卷
关键词
Euclidean space; Danzer-Grünbaum problem; Erdős-Füredi method; sets forming only acute angles; random variable; random set; Bernoulli scheme;
D O I
暂无
中图分类号
学科分类号
摘要
We use probabilistic methods to estimate the cardinality of a set S in a Euclidean space such that no three points of S forma right or an obtuse angle. Let a(n) be the cardinality of a maximal subset S ⊂ ℜn with this property. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ a\left( n \right) \geqslant \frac{2} {3}\left\lfloor {\sqrt 2 \left( {\frac{2} {{\sqrt 3 }}} \right)^n } \right\rfloor $$\end{document}.
引用
收藏
页码:489 / 496
页数:7
相关论文
共 5 条
[1]  
Danzer L.(1962)Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee Math. Z. 79 95-99
[2]  
Grünbaum B.(1983)The greatest angle among Ann. DiscreteMath. 17 275-283
[3]  
Erdős P.(2009) points in the Uspekhi Mat. Nauk 64 181-182
[4]  
Füredi Z.(undefined)-dimensional Euclidean space undefined undefined undefined-undefined
[5]  
Buchok L. V.(undefined)Acute Danzer-Grünbaum triangles undefined undefined undefined-undefined