Just infinite alternative algebras

被引:0
作者
A. S. Panasenko
机构
[1] Novosibirsk State University,Sobolev Institute ofMathematics
[2] Russia Sobolev Institute of Mathematics,undefined
来源
Mathematical Notes | 2015年 / 98卷
关键词
alternative algebra; just infinite-dimensional algebra; prime algebra; Noetherian property with respect to one-sided ideals; Cayley–Dickson ring; exceptional algebra;
D O I
暂无
中图分类号
学科分类号
摘要
Alternative just infinite-dimensional algebras are studied, i.e., infinite-dimensional algebras in which every nonzero ideal has finite codimension. It is proved that these algebras are prime. In the nonassociative case, the Noetherian property with respect to one-sided ideals is proved, and the cases of Cayley–Dickson rings and exceptional algebras are investigated.
引用
收藏
页码:805 / 812
页数:7
相关论文
共 15 条
[1]  
Shalev A.(1997)Narrow Lie algebras: a coclass theory and a characterization of the Witt algebra J. Algebra 189 294-331
[2]  
Zelmanov E. I.(2002)Algebras which are just infinite dimensional and their identities Israel J. Math 127 245-251
[3]  
Farkas D. R.(2006)Projectively simple rings Adv. Math. 203 365-407
[4]  
Small L. W.(2007)A few properties of just infinite algebras Comm. Algebra 35 1703-1707
[5]  
Reichstein Z.(1994)Nonassociative coalgebras Comm. Algebra 22 4693-4716
[6]  
Zhang J. J.(1996)Structurable coalgebras Algebra Logika 35 529-542
[7]  
Farina J.(1976)Absolute zero divisors and radicals of finitely generated alternative algebras Algebra Logika 15 585-602
[8]  
Pendergrass-Rice C.(2007)Exceptional prime alternative algebras Sib. Mat. Zh. 48 1322-1337
[9]  
Anquela A.(2004)Prime alternative algebras that are nearly commutative Izv. Ross. Akad. Nauk Ser.Mat. 68 183-206
[10]  
Cortés T.(undefined)undefined undefined undefined undefined-undefined