The abelian monodromy extension property for families of curves

被引:0
作者
Sabin Cautis
机构
[1] Rice University,Department of Mathematics
来源
Mathematische Annalen | 2009年 / 344卷
关键词
Modulus Space; Abelian Variety; Exceptional Divisor; Mapping Class Group; Dehn Twist;
D O I
暂无
中图分类号
学科分类号
摘要
Necessary and sufficient conditions are given (in terms of monodromy) for extending a family of smooth curves over an open subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U \subset S}$$\end{document} to a family of stable curves over S. More precisely, we introduce the abelian monodromy extension (AME) property and show that the standard Deligne–Mumford compactification is the unique, maximal AME compactification of the moduli space of curves. We also show that the Baily–Borel compactification is the unique, maximal projective AME compactification of the moduli space of abelian varieties.
引用
收藏
页码:717 / 747
页数:30
相关论文
共 23 条
[21]  
Saito T.(undefined)undefined undefined undefined undefined-undefined
[22]  
Stix J.(undefined)undefined undefined undefined undefined-undefined
[23]  
Vakil R.(undefined)undefined undefined undefined undefined-undefined