The abelian monodromy extension property for families of curves

被引:0
作者
Sabin Cautis
机构
[1] Rice University,Department of Mathematics
来源
Mathematische Annalen | 2009年 / 344卷
关键词
Modulus Space; Abelian Variety; Exceptional Divisor; Mapping Class Group; Dehn Twist;
D O I
暂无
中图分类号
学科分类号
摘要
Necessary and sufficient conditions are given (in terms of monodromy) for extending a family of smooth curves over an open subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U \subset S}$$\end{document} to a family of stable curves over S. More precisely, we introduce the abelian monodromy extension (AME) property and show that the standard Deligne–Mumford compactification is the unique, maximal AME compactification of the moduli space of curves. We also show that the Baily–Borel compactification is the unique, maximal projective AME compactification of the moduli space of abelian varieties.
引用
收藏
页码:717 / 747
页数:30
相关论文
共 23 条
[1]  
Altman A.(1971)On the purity of the branch locus Compos. Math. Fasc. 23 461-465
[2]  
Kleiman S.L.(1972)Some metric properties of arithmetic quotients of symmetric space and an extension theorem J. Diff. Geom. 6 543-560
[3]  
Borel A.(1983)Abelian and solvable subgroups of the mapping class groups Duke Math. J. 50 1107-1120
[4]  
Birman J.(2006)Intersection theory of toroidal compactifications of Bull. Lond. Math. Soc. 38 396-400
[5]  
Lubotzky A.(2000)Fundamental groups of rationally connected varieties Mich. Math. J. 48 359-368
[6]  
McCarthy J.(1997)Quotients by groupoids Ann. Math. 145 193-213
[7]  
Erdenberger C.(2004)On coverings of Deligne–Mumford stacks and surjectivity of the Brauer map Bull. Lond. Math. Soc. 36 188-192
[8]  
Grushevsky S.(1997)On extending families of curves J. Algebraic Geom. 6 545-562
[9]  
Hulek K.(1973)On the Picard–Lefschetz transformation for algebraic manifolds acquiring general singularities Trans. Am. Math. Soc. 181 89-126
[10]  
Kollár J.(1994)Smooth Deligne–Mumford compactifications by means of Prym level structures J. Algebraic Geom. 3 283-293