Scaling of maximum probability density function of velocity increments in turbulent Rayleigh-Bénard convection

被引:0
作者
Xiang Qiu
Yong-xiang Huang
Quan Zhou
Chao Sun
机构
[1] Shanghai Institute of Technology,School of Science
[2] Shanghai University,Shanghai Institute of Applied Mathematics and Mechanics
[3] University of Twente,Physics of Fluids Group
来源
Journal of Hydrodynamics | 2014年 / 26卷
关键词
Rayleigh-Bénard convection; scaling; probability density function (pdf);
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we apply a scaling analysis of the maximum of the probability density function (pdf) of velocity increments, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p_{\max }}\left( \tau \right) = {\max _{\Delta {u_\tau }}}p\left( {\Delta {u_\tau }} \right) \sim {\tau ^{ - \alpha }}$$\end{document}, for a velocity field of turbulent Rayleigh-Bénard convection obtained at the Taylor-microscale Reynolds number Reλ ≈ 60. The scaling exponent α is comparable with that of the first-order velocity structure function, ζ(1), in which the large-scale effect might be constrained, showing the background fluctuations of the velocity field. It is found that the integral time T(x/D) scales as T(x/D) ~ (x/D)−β, with a scaling exponent β = 0.25 ± 0.01, suggesting the large-scale inhomo-geneity of the flow. Moreover, the pdf scaling exponent α(x, z) is strongly inhomogeneous in the x (horizontal) direction. The vertical-direction-averaged pdf scaling exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde \alpha \left( x \right)$$\end{document} obeys a logarithm law with respect to x, the distance from the cell sidewall, with a scaling exponent ξ ≈ 0.22 within the velocity boundary layer and ξ ≈ 0.28 near the cell sidewall. In the cell’s central region, α(x, z) fluctuates around 0.37, which agrees well with ζ(1) obtained in high-Reynolds-number turbulent flows, implying the same intermittent correction. Moreover, the length of the inertial range represented in decade \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\tilde T}_I}\left( x \right)$$\end{document} is found to be linearly increasing with the wall distance x with an exponent 0.65 ± 0.05.
引用
收藏
页码:351 / 362
页数:11
相关论文
共 49 条
[1]  
Kolmogorov A N(1941)Local structure of turbulence in an incompressible fluid at very high Reynolds numbers[J] Doklady Akademii Nauk SSSR 30 301-305
[2]  
She Z S(1994)Universal scaling laws in fully developed turbulence[J] Physical Review Letter 72 336-339
[3]  
Leveque E(1996)Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity[J] Europhysics Letters 34 411-416
[4]  
Arneodo A(1997)The phenomenology of small-scale turbulence[J] Annual Review Fluid Mechanics 39 435-472
[5]  
Baudet C(2010)Small-scale properties of turbulent Rayleigh-Benard convection[J] Annual Review Fluid Mechanics 42 335-364
[6]  
Benzi R(2008)Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders[J] European Physical Journal B 61 201-215
[7]  
Sreenivasan K(2010)Velocity field of compressible magnetohydrodynamic turbulence: Wavelet decomposition and mode scalings[J] Astrophysics Journal 720 742-756
[8]  
Antonia R(2012)Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold Physics of Fluids 24 025102-111
[9]  
Lohse D(2009)Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis[J] Journal of Hydrology 373 103-457
[10]  
Xia K Q(1999)A new view of nonlinear water waves: The hilbert spectrum[J] Annual Review of Fluid Mechanics 31 417-2229