CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data
被引:0
|
作者:
Tingting Zou
论文数: 0引用数: 0
h-index: 0
机构:Northeast Normal University,KLAS and School of Mathematics and Statistics
Tingting Zou
Shurong Zheng
论文数: 0引用数: 0
h-index: 0
机构:Northeast Normal University,KLAS and School of Mathematics and Statistics
Shurong Zheng
Zhidong Bai
论文数: 0引用数: 0
h-index: 0
机构:Northeast Normal University,KLAS and School of Mathematics and Statistics
Zhidong Bai
Jianfeng Yao
论文数: 0引用数: 0
h-index: 0
机构:Northeast Normal University,KLAS and School of Mathematics and Statistics
Jianfeng Yao
Hongtu Zhu
论文数: 0引用数: 0
h-index: 0
机构:Northeast Normal University,KLAS and School of Mathematics and Statistics
Hongtu Zhu
机构:
[1] Northeast Normal University,KLAS and School of Mathematics and Statistics
[2] The University of Hong Kong,Department of Statistics and Actuarial Science
[3] University of North Carolina at Chapel Hill,undefined
来源:
Statistical Papers
|
2022年
/
63卷
关键词:
Sample covariance matrices;
Linear spectral statistics;
Central limit theorem;
Repeated linear processes;
High-dimensional dependent data;
15B52;
62E20;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
This paper investigates the central limit theorem for linear spectral statistics of high dimensional sample covariance matrices of the form Bn=n-1∑j=1nQxjxj∗Q∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf {B}}_n=n^{-1}\sum _{j=1}^{n}{\mathbf {Q}}{\mathbf {x}}_j{\mathbf {x}}_j^{*}{\mathbf {Q}}^{*}$$\end{document} under the assumption that p/n→y>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p/n\rightarrow y>0$$\end{document}, where Q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf {Q}}$$\end{document} is a p×k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p\times k$$\end{document} nonrandom matrix and {xj}j=1n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{{\mathbf {x}}_j\}_{j=1}^n$$\end{document} is a sequence of independent k-dimensional random vector with independent entries. A key novelty here is that the dimension k≥p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k\ge p$$\end{document} can be arbitrary, possibly infinity. This new model of sample covariance matrix Bn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf {B}}_n$$\end{document} covers most of the known models as its special cases. For example, standard sample covariance matrices are obtained with k=p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k=p$$\end{document} and Q=Tn1/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf {Q}}={\mathbf {T}}_n^{1/2}$$\end{document} for some positive definite Hermitian matrix Tn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf {T}}_n$$\end{document}. Also with k=∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k=\infty $$\end{document} our model covers the case of repeated linear processes considered in recent high-dimensional time series literature. The CLT found in this paper substantially generalizes the seminal CLT in Bai and Silverstein (Ann Probab 32(1):553–605, 2004). Applications of this new CLT are proposed for testing the AR(1) or AR(2) structure for a causal process. Our proposed tests are then used to analyze a large fMRI data set.
机构:
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R ChinaShanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
Li, Weiming
Li, Zeng
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, University Pk, PA 16802 USAShanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
Li, Zeng
Yao, Jianfeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Pokfulam, Hong Kong, Peoples R ChinaShanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
机构:
NE Normal Univ, KLAS, Changchun 130024, Jilin Province, Peoples R China
NE Normal Univ, Sch Math & Stat, Changchun 130024, Jilin Province, Peoples R ChinaNE Normal Univ, KLAS, Changchun 130024, Jilin Province, Peoples R China
Zheng, Shurong
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES,
2012,
48
(02):
: 444
-
476
机构:
Hefei Univ Technol, Sch Math, Hefei, Peoples R ChinaNanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore, Singapore
Hui, Jun
Pan, Guangming
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore, SingaporeNanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore, Singapore