On the ground state for quantum graphs

被引:0
|
作者
Pavel Kurasov
机构
[1] Stockholm University,Department of Mathematics
来源
Letters in Mathematical Physics | 2019年 / 109卷
关键词
Quantum graphs; Positivity preserving semigroups; Ground state; 34L15; 35R30;
D O I
暂无
中图分类号
学科分类号
摘要
Ground-state eigenfunctions of Schrödinger operators can often be chosen positive. We analyse to which extent this is true for quantum graphs—differential operators on metric graphs. It is shown that the theorem holds in the case of generalised delta couplings at the vertices—a new class of vertex conditions introduced in the paper. It is shown that this class of vertex conditions is optimal. Relations to positivity preserving and positivity improving semigroups are clarified.
引用
收藏
页码:2491 / 2512
页数:21
相关论文
共 50 条
  • [21] On quantum Cayley graphs
    Wasilewski, Mateusz
    DOCUMENTA MATHEMATICA, 2024, 29 : 1281 - 1317
  • [22] New quantum Monte Carlo approach to ground-state phase transitions in quantum spin systems
    Nonomura, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (01) : 5 - 7
  • [23] Quantum statistics on graphs
    Harrison, J. M.
    Keating, J. P.
    Robbins, J. M.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2125): : 212 - 233
  • [24] Effect of temperature on the ground state of polaron in an asymmetrical Gaussian potential quantum well
    Sarengaowa
    Xiao, Jing-Lin
    Zhao, Cui-Lan
    CHINESE JOURNAL OF PHYSICS, 2017, 55 (05) : 1883 - 1887
  • [25] On the ground state of one-dimensional quantum droplets for large chemical potentials
    Holmer, J.
    Zhang, K. Z.
    Kevrekidis, P. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (44)
  • [26] Ground state energies of quantum dots in high magnetic fields:: a new approach
    Kainz, J
    Mikhailov, SA
    Wensauer, A
    Rössler, U
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 12 (1-4) : 888 - 891
  • [27] Ground state energy of charged particles clusters by quantum Monte Carlo method
    Moreira, N. L.
    Rabelo, J. N. Teixeira
    Candido, L.
    BRAZILIAN JOURNAL OF PHYSICS, 2006, 36 (3A) : 717 - 719
  • [28] Variational method for the ground state energy of a quantum many-particle system
    Takizawa, H
    Oguchi, A
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (07) : 2354 - 2355
  • [29] ON THE HOT SPOTS OF QUANTUM GRAPHS
    Kennedy, James B.
    Rohleder, Jonathan
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (09) : 3011 - 3045
  • [30] On the Weyl Law for Quantum Graphs
    Odzak, Almasa
    Sceta, Lamija
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (01) : 119 - 131