Dynamic Graph Coloring

被引:0
|
作者
Luis Barba
Jean Cardinal
Matias Korman
Stefan Langerman
André van Renssen
Marcel Roeloffzen
Sander Verdonschot
机构
[1] ETH Zürich,Department of Computer Science
[2] Université Libre de Bruxelles,Département d’Informatique
[3] Tohoku University,School of Information Technologies
[4] University of Sydney,School of Computer Science
[5] TU Eindhoven,undefined
[6] Carleton University,undefined
来源
Algorithmica | 2019年 / 81卷
关键词
Dynamic coloring; Graphs; Data structures; Amortized algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the number of vertex recolorings that an algorithm needs to perform in order to maintain a proper coloring of a graph under insertion and deletion of vertices and edges. We present two algorithms that achieve different trade-offs between the number of recolorings and the number of colors used. For any d>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d>0$$\end{document}, the first algorithm maintains a proper O(CdN1/d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\mathcal {C} dN ^{1/d})$$\end{document}-coloring while recoloring at most O(d) vertices per update, where C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C} $$\end{document} and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N $$\end{document} are the maximum chromatic number and maximum number of vertices, respectively. The second algorithm reverses the trade-off, maintaining an O(Cd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\mathcal {C} d)$$\end{document}-coloring with O(dN1/d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(dN ^{1/d})$$\end{document} recolorings per update. The two converge when d=logN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d = \log N $$\end{document}, maintaining an O(ClogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\mathcal {C} \log N)$$\end{document}-coloring with O(logN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log N)$$\end{document} recolorings per update. We also present a lower bound, showing that any algorithm that maintains a c-coloring of a 2-colorable graph on N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N $$\end{document} vertices must recolor at least Ω(N2c(c-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (N ^\frac{2}{c(c-1)})$$\end{document} vertices per update, for any constant c≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c \ge 2$$\end{document}.
引用
收藏
页码:1319 / 1341
页数:22
相关论文
共 50 条
  • [21] Relaxed coloring of a graph
    Deuber, W
    Zhu, XD
    GRAPHS AND COMBINATORICS, 1998, 14 (02) : 121 - 130
  • [22] Graph coloring with webMathematica
    Ufuktepe, Ü
    Bacak, G
    Beseri, T
    COMPUTATIONAL SCIENCE - ICCS 2004, PROCEEDINGS, 2004, 3039 : 376 - 381
  • [23] Nonrepetitive graph coloring
    Grytczuk, Jaroslaw
    Graph Theory in Paris: PROCEEDINGS OF A CONFERENCE IN MEMORY OF CALUDE BERGE, 2007, : 209 - 218
  • [24] On r-dynamic vertex coloring of some flower graph families
    Gomathi, C. S.
    Mohanapriya, N.
    Kristina, Arika Indah
    Dafik
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (01)
  • [25] Reversible dynamic secure steganography for medical image using graph coloring
    Thiyagarajan, P.
    Aghila, G.
    HEALTH POLICY AND TECHNOLOGY, 2013, 2 (03) : 151 - 161
  • [26] On r-dynamic k-coloring of ladder graph families
    Irin Feno, A.
    Venkatachalam, M.
    Rathour, Laxmi
    Cangul, I. N.
    Abirami, K.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [27] Graph coloring and conditional graph entropy
    Doshi, Vishal
    Shah, Devavrat
    Medard, Muriel
    Jaggi, Sidharth
    2006 FORTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-5, 2006, : 2137 - +
  • [28] Dynamic spectrum assignment based on graph coloring in cognitive radio network
    Jia, Jie
    Wang, Chuang
    Zhang, Zhao-Yang
    Chen, Jian
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2012, 33 (03): : 336 - 339
  • [29] ROLE COLORING A GRAPH
    EVERETT, MG
    BORGATTI, S
    MATHEMATICAL SOCIAL SCIENCES, 1991, 21 (02) : 183 - 188
  • [30] Graph Coloring on the GPU
    Osama, Muhammad
    Minh Truong
    Yang, Carl
    Buluc, Aydin
    Owens, John D.
    2019 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2019, : 231 - 240