Dynamic Graph Coloring

被引:0
|
作者
Luis Barba
Jean Cardinal
Matias Korman
Stefan Langerman
André van Renssen
Marcel Roeloffzen
Sander Verdonschot
机构
[1] ETH Zürich,Department of Computer Science
[2] Université Libre de Bruxelles,Département d’Informatique
[3] Tohoku University,School of Information Technologies
[4] University of Sydney,School of Computer Science
[5] TU Eindhoven,undefined
[6] Carleton University,undefined
来源
Algorithmica | 2019年 / 81卷
关键词
Dynamic coloring; Graphs; Data structures; Amortized algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the number of vertex recolorings that an algorithm needs to perform in order to maintain a proper coloring of a graph under insertion and deletion of vertices and edges. We present two algorithms that achieve different trade-offs between the number of recolorings and the number of colors used. For any d>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d>0$$\end{document}, the first algorithm maintains a proper O(CdN1/d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\mathcal {C} dN ^{1/d})$$\end{document}-coloring while recoloring at most O(d) vertices per update, where C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C} $$\end{document} and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N $$\end{document} are the maximum chromatic number and maximum number of vertices, respectively. The second algorithm reverses the trade-off, maintaining an O(Cd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\mathcal {C} d)$$\end{document}-coloring with O(dN1/d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(dN ^{1/d})$$\end{document} recolorings per update. The two converge when d=logN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d = \log N $$\end{document}, maintaining an O(ClogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\mathcal {C} \log N)$$\end{document}-coloring with O(logN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log N)$$\end{document} recolorings per update. We also present a lower bound, showing that any algorithm that maintains a c-coloring of a 2-colorable graph on N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N $$\end{document} vertices must recolor at least Ω(N2c(c-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (N ^\frac{2}{c(c-1)})$$\end{document} vertices per update, for any constant c≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c \ge 2$$\end{document}.
引用
收藏
页码:1319 / 1341
页数:22
相关论文
共 50 条
  • [1] Dynamic Graph Coloring
    Barba, Luis
    Cardinal, Jean
    Korman, Matias
    Langerman, Stefan
    van Renssen, Andre
    Roeloffzen, Marcel
    Verdonschot, Sander
    ALGORITHMICA, 2019, 81 (04) : 1319 - 1341
  • [2] Dynamic Graph Coloring
    Barba, Luis
    Cardinal, Jean
    Korman, Matias
    Langerman, Stefan
    van Renssen, Andre
    Roeloffzen, Marcel
    Verdonschot, Sander
    ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 97 - 108
  • [3] Dynamic Algorithms for Graph Coloring
    Bhattacharya, Sayan
    Chakrabarty, Deeparnab
    Henzinger, Monika
    Nanongkai, Danupon
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1 - 20
  • [4] Improved Dynamic Graph Coloring
    Solomon, Shay
    Wein, Nicole
    ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (03)
  • [5] Dynamic compression schemes for graph coloring
    Mustafa, Harun
    Schilken, Ingo
    Karasikov, Mikhail
    Eickhoff, Carsten
    Ratsch, Gunnar
    Kahles, Andre
    BIOINFORMATICS, 2019, 35 (03) : 407 - 414
  • [6] Effective and Efficient Dynamic Graph Coloring
    Yuan, Long
    Qin, Lu
    Lin, Xuemin
    Chang, Lijun
    Zhang, Wenjie
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2017, 11 (03): : 338 - 351
  • [7] On the decentralized dynamic graph coloring problem
    Dutot, Antoine
    Guinand, Frederic
    Olivier, Damien
    Pigne, Yoann
    EUROPEAN SIMULATION AND MODELLING CONFERENCE 2007, 2007, : 259 - 261
  • [8] GPU-Accelerated Dynamic Graph Coloring
    Yang, Ying
    Gu, Yu
    Li, Chuanwen
    Wan, Changyi
    Yu, Ge
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2019, 11448 : 296 - 299
  • [9] Fully dynamic algorithms for permutation graph coloring
    Ivkovic, Z
    Sarnath, R
    Sunder, S
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1997, 63 (1-2) : 37 - 55
  • [10] Experimental Analysis of Algorithms for the Dynamic Graph Coloring Problem
    Theunis, Menno
    Roeloffzen, Marcel
    Journal of Graph Algorithms and Applications, 2024, 28 (01) : 313 - 349