Relating the Outer-Independent Total Roman Domination Number with Some Classical Parameters of Graphs

被引:0
作者
Abel Cabrera Martínez
Dorota Kuziak
Ismael G. Yero
机构
[1] Universitat Rovira i Virgili,Departament d’Enginyeria Informàtica i Matemàtiques
[2] Universidad de Cádiz,Departamento de Estadística e Investigación Operativa, Escuela Técnica Superior de Ingeniería de Algeciras
[3] Universidad de Cádiz,Departamento de Matemáticas, Escuela Técnica Superior de Ingeniería de Algeciras
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
Outer-independent total Roman domination; vertex cover; domination; (total)Roman domination; independence; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
For a given graph G without isolated vertex we consider a function f:V(G)→{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: V(G) \rightarrow \{0,1,2\}$$\end{document}. For every i∈{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\in \{0,1,2\}$$\end{document}, let Vi={v∈V(G):f(v)=i}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_i=\{v\in V(G):\; f(v)=i\}$$\end{document}. The function f is known to be an outer-independent total Roman dominating function for the graph G if it is satisfied that; (i) every vertex in V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_0$$\end{document} is adjacent to at least one vertex in V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_2$$\end{document}; (ii) V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_0$$\end{document} is an independent set; and (iii) the subgraph induced by V1∪V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1\cup V_2$$\end{document} has no isolated vertex. The minimum possible weight ω(f)=∑v∈V(G)f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (f)=\sum _{v\in V(G)}f(v)$$\end{document} among all outer-independent total Roman dominating functions for G is called the outer-independent total Roman domination number of G. In this article we obtain new tight bounds for this parameter that improve some well-known results. Such bounds can also be seen as relationships between this parameter and several other classical parameters in graph theory like the domination, total domination, Roman domination, independence, and vertex cover numbers. In addition, we compute the outer-independent total Roman domination number of Sierpiński graphs, circulant graphs, and the Cartesian and direct products of complete graphs.
引用
收藏
相关论文
共 58 条
  • [1] Abdollahzadeh Ahangar H(2017)Outer independent Roman dominating functions in graphs Int. J. Comput. Math. 94 2547-2557
  • [2] Chellali M(2016)Total Roman domination in graphs Appl. Anal. Discrete Math. 10 501-517
  • [3] Samodivkin V(2020)Further results on the total Roman domination in graphs Mathematics 8 349-108
  • [4] Abdollahzadeh Ahangar H(2020)On the total co-independent domination number of some graph operations Rev. Unión Mate. Argentina 2020 2-119
  • [5] Henning MA(2020)On the total outer Mathematics 8 194-22
  • [6] Samodivkin V(2019)-independent domination number of graphs Comput. J. 62 97-136
  • [7] Yero IG(2019)On computational and combinatorial properties of the total co-independent domination number of graphs Discret. Appl. Math. 269 107-600
  • [8] Cabrera Martínez A(2004)Outer-independent total Roman domination in graphs Discret. Math. 278 11-104
  • [9] Cabrera García S(2013)On Roman domination in graphs Congr. Numer. 217 129-384
  • [10] Carrión García A(2017)Few compare to the great Roman empire Discret. Appl. Math. 217 565-35550