Fixed Point Theorems for Multi-valued Mappings with a ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upphi $$\end{document} Function

被引:0
作者
Muhammad Usman Ali
Tayyab Kamran
Wutiphol Sintunavarat
机构
[1] National University of Sciences and Technology,Department of Mathematics, School of Natural Sciences
[2] Quaid-i-Azam University,Department of Mathematics
[3] Thammasat University Rangsit Center,Department of Mathematics and Statistics, Faculty of Science and Technology
关键词
Fixed points; Coincidence points; family; 47H10; 54H25;
D O I
10.1007/s40010-016-0317-6
中图分类号
学科分类号
摘要
In this paper, we introduce a new family of mappings from R+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}_{+}^{4}$$\end{document} to R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}_{+}$$\end{document} and it depends on fixed function ψ:R+→R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\uppsi :\mathbb {R}_{+}\rightarrow \mathbb {R}_{+}$$\end{document}, where R+=[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}_{+}=[0,\infty )$$\end{document}. We call it a Φψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _\uppsi $$\end{document} family. Then we define a new contractive type condition for multi-valued mappings involving a function ϕ∈Φψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upphi \in \Phi _\uppsi $$\end{document}. We also establish some fixed point theorems using our new contractive condition. Our results generalize many existing fixed point theorems.
引用
收藏
页码:33 / 39
页数:6
相关论文
共 50 条
  • [1] von Neumann J(1928)Zur theorie der gesellschaftsspiele Mathematische Annalen 100 295-320
  • [2] Nadler SB(1969)Multi-valued contraction mappings Pac J Math 30 475-488
  • [3] Altun I(2011)Fixed point theorems for generalized Arab J Sci Eng 36 1471-1483
  • [4] Choudhury BS(2011)-weak contractive multivalued maps on metric and ordered metric spaces Arab J Math Sci 17 135-151
  • [5] Metiya N(2004)Multi-valued and single-valued fixed point results in partially ordered metric space Soochow J Math 30 461-469
  • [6] Feng Y(1983)Fixed point theorems for multi-valued increasing operators in partial ordered spaces Math Jpn 28 639-646
  • [7] Liu S(2012)Fixed points for set-valued mappings on complete and compact metric spaces J Inequal Appl 2012 1-19
  • [8] Fisher B(2007)Weakly isotone increasing mappings and endpoints in partially ordered metric spaces Nonlinear Anal 67 2289-2296
  • [9] Iseki K(2004)Multi-valued J Math Anal Appl 299 235-241
  • [10] Hussain N(2001)-weakly Picard mappings Int J Math Math Sci 26 179-182