Macaulay matrix for Feynman integrals: linear relations and intersection numbers

被引:0
作者
Vsevolod Chestnov
Federico Gasparotto
Manoj K. Mandal
Pierpaolo Mastrolia
Saiei J. Matsubara-Heo
Henrik J. Munch
Nobuki Takayama
机构
[1] Università degli Studi di Padova,Dipartimento di Fisica e Astronomia
[2] INFN,Department of Mathematics
[3] Sezione di Padova,Faculty of Advanced Science and Technology
[4] Kobe University,undefined
[5] Kumamoto University,undefined
来源
Journal of High Energy Physics | / 2022卷
关键词
Differential and Algebraic Geometry; Scattering Amplitudes;
D O I
暂无
中图分类号
学科分类号
摘要
We elaborate on the connection between Gel’fand-Kapranov-Zelevinsky systems, de Rham theory for twisted cohomology groups, and Pfaffian equations for Feynman Integrals. We propose a novel, more efficient algorithm to compute Macaulay matrices, which are used to derive Pfaffian systems of differential equations. The Pfaffian matrices are then employed to obtain linear relations for A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}-hypergeometric (Euler) integrals and Feynman integrals, through recurrence relations and through projections by intersection numbers.
引用
收藏
相关论文
共 74 条
  • [1] Remiddi E(1997) ( Nuovo Cim. A 110 1435-undefined
  • [2] Papadopoulos CG(2014)) JHEP 07 088-undefined
  • [3] Tarasov OV(1996) ( Phys. Rev. D 54 6479-undefined
  • [4] Lee RN(2010)) Nucl. Phys. B 830 474-undefined
  • [5] von Manteuffel A(2015)undefined Phys. Lett. B 744 101-undefined
  • [6] Schabinger RM(2016)undefined JHEP 12 030-undefined
  • [7] Peraro T(2019)undefined JHEP 07 031-undefined
  • [8] Peraro T(1995)undefined Nagoya Math. J. 139 67-undefined
  • [9] Cho K(1994)undefined Kyushu J. Math. 48 335-undefined
  • [10] Matsumoto K(2003)undefined Funkcial. Ekvac. 46 213-undefined