Analysis of a P1⊕RT0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{P}_1\oplus \varvec{RT}_0$$\end{document} finite element method for linear elasticity with Dirichlet and mixed boundary conditions

被引:0
|
作者
Hongpeng Li
Xu Li
Hongxing Rui
机构
[1] Shandong University,School of Mathematics
[2] Eastern Institute of Technology,Eastern Institute for Advanced Study
关键词
Linear elasticity; Divergence-free element; Gradient-robust; Locking-free; Mixed boundary conditions; 65N12; 65N22; 65N30; 74B05; 65N12; 65N22; 65N30; 74B05;
D O I
10.1007/s10444-024-10107-w
中图分类号
学科分类号
摘要
In this paper, we investigate a low-order robust numerical method for the linear elasticity problem. The method is based on a Bernardi–Raugel-like H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{H}(\textrm{div})$$\end{document}-conforming method proposed first for the Stokes flows in [Li and Rui, IMA J. Numer. Anal. 42 (2022) 3711–3734]. Therein, the lowest-order H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{H}(\textrm{div})$$\end{document}-conforming Raviart–Thomas space (RT0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{RT}_0$$\end{document}) was added to the classical conforming P1×P0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{P}_1\times P_0$$\end{document} pair to meet the inf-sup condition, while preserving the divergence constraint and some important features of conforming methods. Due to the inf-sup stability of the P1⊕RT0×P0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{P}_1\oplus \varvec{RT}_0\times P_0$$\end{document} pair, a locking-free elasticity discretization with respect to the Lamé constant λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} can be naturally obtained. Moreover, our scheme is gradient-robust for the pure and homogeneous displacement boundary problem, that is, the discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{H}^1$$\end{document}-norm of the displacement is O(λ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\lambda ^{-1})$$\end{document} when the external body force is a gradient field. We also consider the mixed displacement and stress boundary problem, whose P1⊕RT0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{P}_1\oplus \varvec{RT}_0$$\end{document} discretization should be carefully designed due to a consistency error arising from the RT0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{RT}_0$$\end{document} part. We propose both symmetric and nonsymmetric schemes to approximate the mixed boundary case. The optimal error estimates are derived for the energy norm and/or L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{L}^2$$\end{document}-norm. Numerical experiments demonstrate the accuracy and robustness of our schemes.
引用
收藏
相关论文
共 50 条