The large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 superconformal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{W} $\end{document}∞ algebra

被引:0
作者
Matteo Beccaria
Constantin Candu
Matthias R. Gaberdiel
机构
[1] Università del Salento & INFN,Dipartimento di Matematica e Fisica ‘Ennio De Giorgi’
[2] ETH Zurich,Institut für Theoretische Physik
关键词
Higher Spin Symmetry; AdS-CFT Correspondence;
D O I
10.1007/JHEP06(2014)117
中图分类号
学科分类号
摘要
The most general large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 superconformal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{W} $\end{document}∞ algebra, containing in addition to the superconformal algebra one supermultiplet for each integer spin, is analysed in detail. It is found that the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{W} $\end{document}∞ algebra is uniquely determined by the levels of the two su(2) algebras, a conclusion that holds both for the linear and the non-linear case. We also perform various cross-checks of our analysis, and exhibit two different types of truncations in some detail.
引用
收藏
相关论文
共 77 条
  • [1] Vasiliev MA(1996)Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions Int. J. Mod. Phys. D 5 763-undefined
  • [2] Gaberdiel MR(2013)Minimal model holography J. Phys. A 46 214002-undefined
  • [3] Gopakumar R(2011)An AdS Phys. Rev. D 83 066007-undefined
  • [4] Gaberdiel MR(2001) dual for minimal model CFTs Nucl. Phys. Proc. Suppl. 102 113-undefined
  • [5] Gopakumar R(2013)Stringy gravity, interacting tensionless strings and massless higher spins J. Phys. A 46 214006-undefined
  • [6] Sundborg B(2013)Notes on strings and higher spins J. Phys. A 46 214009-undefined
  • [7] Sagnotti A(2013)ABJ triality: from higher spin fields to strings JHEP 09 036-undefined
  • [8] Chang C-M(2005)Large- Adv. Theor. Math. Phys. 9 435-undefined
  • [9] Minwalla S(2014) = 4 holography JHEP 04 193-undefined
  • [10] Sharma T(2011)The search for a holographic dual to AdS JHEP 08 029-undefined