3D Vehicle Detection Based on LiDAR and Camera Fusion

被引:0
|
作者
Yingfeng Cai
Tiantian Zhang
Hai Wang
Yicheng Li
Qingchao Liu
Xiaobo Chen
机构
[1] Institute of Automative Engineering,School of Automotive and Traffic Engineering
[2] Jiangsu University,undefined
[3] Jiangsu University,undefined
来源
Automotive Innovation | 2019年 / 2卷
关键词
Vehicle detection; LiDAR point cloud; RGB image; Fusion;
D O I
暂无
中图分类号
学科分类号
摘要
Nowadays, the deep learning for object detection has become more popular and is widely adopted in many fields. This paper focuses on the research of LiDAR and camera sensor fusion technology for vehicle detection to ensure extremely high detection accuracy. The proposed network architecture takes full advantage of the deep information of both the LiDAR point cloud and RGB image in object detection. First, the LiDAR point cloud and RGB image are fed into the system. Then a high-resolution feature map is used to generate a reliable 3D object proposal for both the LiDAR point cloud and RGB image. Finally, 3D box regression is performed to predict the extent and orientation of vehicles in 3D space. Experiments on the challenging KITTI benchmark show that the proposed approach obtains ideal detection results and the detection time of each frame is about 0.12 s. This approach could establish a basis for further research in autonomous vehicles.
引用
收藏
页码:276 / 283
页数:7
相关论文
共 50 条
  • [1] 3D Vehicle Detection Based on LiDAR and Camera Fusion
    Cai, Yingfeng
    Zhang, Tiantian
    Wang, Hai
    Li, Yicheng
    Liu, Qingchao
    Chen, Xiaobo
    AUTOMOTIVE INNOVATION, 2019, 2 (04) : 276 - 283
  • [2] A LiDAR-Camera Fusion 3D Object Detection Algorithm
    Liu, Leyuan
    He, Jian
    Ren, Keyan
    Xiao, Zhonghua
    Hou, Yibin
    INFORMATION, 2022, 13 (04)
  • [3] Real-Time Vehicle Detection Framework Based on the Fusion of LiDAR and Camera
    Guan, Limin
    Chen, Yi
    Wang, Guiping
    Lei, Xu
    ELECTRONICS, 2020, 9 (03)
  • [4] FusionGAN-Detection: vehicle detection based on 3D-LIDAR and color camera data
    Zhang Hao
    Hua Haiyang
    SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166
  • [5] Robust Curb Detection with Fusion of 3D-Lidar and Camera Data
    Tan, Jun
    Li, Jian
    An, Xiangjing
    He, Hangen
    SENSORS, 2014, 14 (05): : 9046 - 9073
  • [6] 3D Vehicle Detection With RSU LiDAR for Autonomous Mine
    Wang, Guojun
    Wu, Jian
    Xu, Tong
    Tian, Bin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) : 344 - 355
  • [7] Multimodal vehicle detection: fusing 3D-LIDAR and color camera data
    Asvadi, Alireza
    Garrote, Luis
    Premebida, Cristiano
    Peixoto, Paulo
    Nunes, Urbano J.
    PATTERN RECOGNITION LETTERS, 2018, 115 : 20 - 29
  • [8] Vehicle Detection Using Point Cloud and 3D LIDAR Sensor to Draw 3D Bounding Box
    Gagana, H. S.
    Sunitha, N. R.
    Nishanth, K. N.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 983 - 992
  • [9] Influence of Camera-LiDAR Configuration on 3D Object Detection for Autonomous Driving
    Li, Ye
    Hu, Hanjiang
    Liu, Zuxin
    Xu, Xiaohao
    Huang, Xiaonan
    Zhao, Ding
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 9018 - 9025
  • [10] Dual-view 3D object recognition and detection via Lidar point cloud and camera image
    Li, Jing
    Li, Rui
    Li, Jiehao
    Wang, Junzheng
    Wu, Qingbin
    Liu, Xu
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2022, 150