New Kamenev-type oscillation criteria for half-linear partial differential equations

被引:0
|
作者
Ge-feng Yang
Zhi-ting Xu
机构
[1] Guangdong University of Foreign Studies,Cisco School of Informatics
[2] South China Normal University,School of Mathematical Sciences
来源
Acta Mathematicae Applicatae Sinica, English Series | 2012年 / 28卷
关键词
oscillation; half-linear; partial differential equations; Kamenev-type; Damped equation; 35B05; 35J15; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We establish new Kamenev-type oscillation criteria for the half-linear partial differential equation with damping (E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$div(A(x)\left\| {\nabla u} \right\|^{p - 2} \nabla u) + \left\langle {b(x),\left\| {\nabla u} \right\|^{p - 2} \nabla u} \right\rangle + c(x)\left| u \right|^{p - 2} u = 0$\end{document} under quite general conditions. These results are extensions of the recent results developed by Sun [Y.G. Sun, New Kamenev-type oscillation criteria of second order nonlinear differential equations with damping, J. Math. Anal. Appl. 291 (2004) 341–351] for second order ordinary differential equations in a natural way, and improve some existing results in the literature. As applications, we illustrate our main results using two different types of half-linear partial differential equations.
引用
收藏
页码:535 / 548
页数:13
相关论文
共 50 条
  • [31] Kamenev-type oscillation criteria for second-order matrix differential systems
    Wang, QR
    Wu, XM
    Zhu, SM
    APPLIED MATHEMATICS LETTERS, 2003, 16 (06) : 821 - 826
  • [32] Kamenev-type oscillation criteria for second order matrix differential systems with damping
    Basci, Yasemin
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (05): : 1248 - 1267
  • [33] Oscillation criteria for a class of half-linear neutral con- for mable differential equations
    Santra, Shyam Sundar
    Kavitha, Jayapal
    Sadhasivam, Vadivel
    Baleanu, Dumitru
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 30 (03): : 204 - 212
  • [34] On Kamenev-type oscillation theorems for second-order differential equations with damping
    Wong, JSW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (01) : 244 - 257
  • [35] New Criteria for Oscillation of Half-Linear Differential Equations with p-Laplacian-like Operators
    Bazighifan, Omar
    Ghanim, F.
    Awrejcewicz, Jan
    Al-Ghafri, Khalil S.
    Al-Kandari, Maryam
    MATHEMATICS, 2021, 9 (20)
  • [36] Kamenev-type criteria for nonlinear damped dynamic equations
    BOHNER Martin
    LI TongXing
    Science China(Mathematics), 2015, 58 (07) : 1445 - 1452
  • [37] Criteria for Oscillation of Half-Linear Functional Differential Equations of Second-Order
    Almarri, Barakah
    Moaaz, Osama
    Muhib, Ali
    AXIOMS, 2022, 11 (12)
  • [38] Kamenev-type criteria for nonlinear damped dynamic equations
    Martin Bohner
    TongXing Li
    Science China Mathematics, 2015, 58 : 1445 - 1452
  • [39] Interval criteria for oscillation of second-order half-linear differential equations
    Wang, QR
    Yang, QG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) : 224 - 236
  • [40] Oscillation of certain second order half-linear differential equations
    Agarwal, RP
    Grace, SR
    DIFFERENTIAL EQUATIONS AND APPLICATIONS, VOL 2, 2002, : 11 - 18