New Kamenev-type oscillation criteria for half-linear partial differential equations

被引:0
|
作者
Ge-feng Yang
Zhi-ting Xu
机构
[1] Guangdong University of Foreign Studies,Cisco School of Informatics
[2] South China Normal University,School of Mathematical Sciences
来源
Acta Mathematicae Applicatae Sinica, English Series | 2012年 / 28卷
关键词
oscillation; half-linear; partial differential equations; Kamenev-type; Damped equation; 35B05; 35J15; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We establish new Kamenev-type oscillation criteria for the half-linear partial differential equation with damping (E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$div(A(x)\left\| {\nabla u} \right\|^{p - 2} \nabla u) + \left\langle {b(x),\left\| {\nabla u} \right\|^{p - 2} \nabla u} \right\rangle + c(x)\left| u \right|^{p - 2} u = 0$\end{document} under quite general conditions. These results are extensions of the recent results developed by Sun [Y.G. Sun, New Kamenev-type oscillation criteria of second order nonlinear differential equations with damping, J. Math. Anal. Appl. 291 (2004) 341–351] for second order ordinary differential equations in a natural way, and improve some existing results in the literature. As applications, we illustrate our main results using two different types of half-linear partial differential equations.
引用
收藏
页码:535 / 548
页数:13
相关论文
共 50 条
  • [21] Oscillation criteria for second order half-linear differential equations with deviating arguments
    Agarwal, RP
    Grace, SR
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2002, 9 (02): : 217 - 224
  • [22] New Kamenev-type theorems for super-linear matrix differential equations
    Xu, Yancong
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (02) : 410 - 414
  • [23] New oscillation criteria for second-order half-linear advanced differential equations
    Chatzarakis, G. E.
    Dzurina, J.
    Jadlovska, I
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 404 - 416
  • [24] Oscillation criteria for second-order half-linear differential equations
    Manojlovic, JV
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 30 (5-6) : 109 - 119
  • [25] OSCILLATION CRITERIA FOR HALF-LINEAR DIFFERENTIAL EQUATIONS WITH p(t)-LAPLACIAN
    Shoukaku, Yutaka
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2014, 6 (03): : 353 - 360
  • [26] Half-linear differential equations of fourth order: oscillation criteria of solutions
    Omar Bazighifan
    Khalil S. Al-Ghafri
    Maryam Al-Kandari
    F. Ghanim
    Fatemah Mofarreh
    Advances in Continuous and Discrete Models, 2022
  • [27] Oscillation criteria of Kneser-type for second-order half-linear advanced differential equations
    Jadlovska, Irena
    APPLIED MATHEMATICS LETTERS, 2020, 106
  • [28] Half-linear differential equations of fourth order: oscillation criteria of solutions
    Bazighifan, Omar
    Al-Ghafri, Khalil S.
    Al-Kandari, Maryam
    Ghanim, F.
    Mofarreh, Fatemah
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (1):
  • [29] Oscillation of half-linear differential equations with mixed type of argument
    Baculikova, Blanka
    Dzurina, Jozef
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (10) : 1 - 8
  • [30] Kneser-type oscillation criteria for second-order half-linear delay differential equations
    Jadlovska, Irena
    Dzurina, Jozef
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 380