Cumulants in noncommutative probability theory I. Noncommutative exchangeability systems

被引:0
作者
Franz Lehner
机构
[1] Technische Universität Graz,Institut für Mathematik C
来源
Mathematische Zeitschrift | 2004年 / 248卷
关键词
General Setting; Probability Theory; Essential Property; Unify Method; Exchangeability System;
D O I
暂无
中图分类号
学科分类号
摘要
Cumulants linearize convolution of measures. We use a formula of Good to define noncommutative cumulants in a very general setting. It turns out that the essential property needed is exchangeability of random variables. Roughly speaking the formula says that cumulants are moments of a certain ‘‘discrete Fourier transform’’ of a random variable. This provides a simple unified method to understand the known examples of cumulants, like classical, free and various q-cumulants.
引用
收藏
页码:67 / 100
页数:33
相关论文
共 29 条
[1]  
Avitzour undefined(1982)undefined Trans. Amer. Math. Soc. 271 423-undefined
[2]  
Biane undefined(2003)undefined Trans. Amer. Math. Soc. 355 2263-undefined
[3]  
Bożejko undefined(1996)undefined Pacific J. Math. 175 357-undefined
[4]  
Bożejko undefined(1987)undefined J. Reine Angew. Math. 377 170-undefined
[5]  
Brillinger undefined(1969)undefined Ann. Inst. Statist. Math. 21 375-undefined
[6]  
Bożejko undefined(1996)undefined Math. Z. 222 135-undefined
[7]  
Fisher undefined(1929)undefined Proc. Lond. Math. Soc. Series 2 199-undefined
[8]  
Good undefined(1975)undefined Math. Proc. Cambridge Philos. Soc. 78 333-undefined
[9]  
Good undefined(1977)undefined The Ann. Statist. 5 224-undefined
[10]  
Hald undefined(2000)undefined Internat. Statist. Rev. 68 137-undefined