Double branched covers of tunnel number one knots

被引:0
作者
Yeonhee Jang
Luisa Paoluzzi
机构
[1] Nara Women’s University,Department of Mathematics
[2] CNRS,Aix
[3] Centrale Marseille,Marseille Univ
[4] I2M,undefined
[5] UMR 7373,undefined
来源
Geometriae Dedicata | 2021年 / 211卷
关键词
Tunnel number one knots; Double branched covers; Heegaard splittings; Primary 57M25; Secondary 57M12; 57M50;
D O I
暂无
中图分类号
学科分类号
摘要
We provide criteria ensuring that a tunnel number one knot K is not determined by its double branched cover, in the sense that the double branched cover is also the double branched cover of a knot K′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K'$$\end{document} not equivalent to K.
引用
收藏
页码:129 / 143
页数:14
相关论文
共 18 条
  • [1] Double branched covers of tunnel number one knots
    Jang, Yeonhee
    Paoluzzi, Luisa
    GEOMETRIAE DEDICATA, 2021, 211 (01) : 129 - 143
  • [2] On left-orderability and double branched covers of Kanenobu's knots
    Medina, Fabian Doria
    Jackson, Michael
    Ruales, Joaquin
    Zeilberger, Hadas
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2015, 24 (14)
  • [3] Tunnel number one, genus-one fibered knots
    Baker, Kenneth L.
    Johnson, Jesse E.
    Klodginski, Elizabeth A.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2009, 17 (01) : 1 - 16
  • [4] TUNNEL NUMBER ONE KNOTS, m-SMALL KNOTS AND THE MORIMOTO CONJECTURE
    Yang, Guoqiu
    Yin, Xunbo
    Lei, Fengchun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (12) : 4391 - 4399
  • [5] A note on tunnel number of composite knots
    Gao, Xutao
    Guo, Qilong
    Qiu, Ruifeng
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (16) : 2240 - 2243
  • [6] High distance tangles and tunnel number of knots
    Saito, Toshio
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2018, 165 (03) : 541 - 548
  • [7] COMBINATORIAL KNOT FLOER HOMOLOGY AND DOUBLE BRANCHED COVERS
    Douroudian, Fatemeh
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2013, 22 (06)
  • [8] THE GROWTH RATE OF THE TUNNEL NUMBER OF m-SMALL KNOTS
    Kobayashi, Tsuyoshi
    Rieck, Yo'av
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 295 (01) : 57 - 102
  • [9] Additivity of handle number and Morse-Novikov number of a-small knots
    Manjarrez-Gutierrez, Fabiola
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (01) : 117 - 125
  • [10] Strongly-cyclic branched coverings of knots via (g, 1)-decompositions
    P. Cristofori
    M. Mulazzani
    A. Vesnin
    Acta Mathematica Hungarica, 2007, 116 : 163 - 176